Metamath Proof Explorer


Theorem mptiffisupp

Description: Conditions for a mapping function defined with a conditional to have finite support. (Contributed by Thierry Arnoux, 20-Feb-2025)

Ref Expression
Hypotheses mptiffisupp.f F=xAifxBCZ
mptiffisupp.a φAU
mptiffisupp.b φBFin
mptiffisupp.c φxBCV
mptiffisupp.z φZW
Assertion mptiffisupp φfinSuppZF

Proof

Step Hyp Ref Expression
1 mptiffisupp.f F=xAifxBCZ
2 mptiffisupp.a φAU
3 mptiffisupp.b φBFin
4 mptiffisupp.c φxBCV
5 mptiffisupp.z φZW
6 2 mptexd φxAifxBCZV
7 1 6 eqeltrid φFV
8 1 funmpt2 FunF
9 8 a1i φFunF
10 partfun xAifxBCZ=xABCxABZ
11 1 10 eqtri F=xABCxABZ
12 11 oveq1i FsuppZ=xABCxABZsuppZ
13 inss2 ABB
14 13 a1i φABB
15 14 sselda φxABxB
16 15 4 syldan φxABCV
17 16 fmpttd φxABC:ABV
18 incom BA=AB
19 infi BFinBAFin
20 3 19 syl φBAFin
21 18 20 eqeltrrid φABFin
22 17 21 5 fidmfisupp φfinSuppZxABC
23 difexg AUABV
24 mptexg ABVxABZV
25 2 23 24 3syl φxABZV
26 funmpt FunxABZ
27 26 a1i φFunxABZ
28 supppreima FunxABZxABZVZWxABZsuppZ=xABZ-1ranxABZZ
29 26 25 5 28 mp3an2i φxABZsuppZ=xABZ-1ranxABZZ
30 simpr φAB=AB=
31 30 mpteq1d φAB=xABZ=xZ
32 mpt0 xZ=
33 31 32 eqtrdi φAB=xABZ=
34 33 cnveqd φAB=xABZ-1=-1
35 cnv0 -1=
36 34 35 eqtrdi φAB=xABZ-1=
37 36 imaeq1d φAB=xABZ-1ranxABZZ=ranxABZZ
38 0ima ranxABZZ=
39 37 38 eqtrdi φAB=xABZ-1ranxABZZ=
40 eqid xABZ=xABZ
41 simpr φABAB
42 40 41 rnmptc φABranxABZ=Z
43 42 difeq1d φABranxABZZ=ZZ
44 difid ZZ=
45 43 44 eqtrdi φABranxABZZ=
46 45 imaeq2d φABxABZ-1ranxABZZ=xABZ-1
47 ima0 xABZ-1=
48 46 47 eqtrdi φABxABZ-1ranxABZZ=
49 39 48 pm2.61dane φxABZ-1ranxABZZ=
50 29 49 eqtrd φxABZsuppZ=
51 0fin Fin
52 50 51 eqeltrdi φxABZsuppZFin
53 25 5 27 52 isfsuppd φfinSuppZxABZ
54 22 53 fsuppun φxABCxABZsuppZFin
55 12 54 eqeltrid φFsuppZFin
56 7 5 9 55 isfsuppd φfinSuppZF