Metamath Proof Explorer


Theorem mrieqv2d

Description: In a Moore system, a set is independent if and only if all its proper subsets have closure properly contained in the closure of the set. Part of Proposition 4.1.3 in FaureFrolicher p. 83. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses mrieqvd.1 φAMooreX
mrieqvd.2 N=mrClsA
mrieqvd.3 I=mrIndA
mrieqvd.4 φSX
Assertion mrieqv2d φSIssSNsNS

Proof

Step Hyp Ref Expression
1 mrieqvd.1 φAMooreX
2 mrieqvd.2 N=mrClsA
3 mrieqvd.3 I=mrIndA
4 mrieqvd.4 φSX
5 pssnel sSxxS¬xs
6 5 3ad2ant3 φSIsSxxS¬xs
7 1 3ad2ant1 φSIsSAMooreX
8 7 adantr φSIsSxS¬xsAMooreX
9 simprr φSIsSxS¬xs¬xs
10 difsnb ¬xssx=s
11 9 10 sylib φSIsSxS¬xssx=s
12 simpl3 φSIsSxS¬xssS
13 12 pssssd φSIsSxS¬xssS
14 13 ssdifd φSIsSxS¬xssxSx
15 11 14 eqsstrrd φSIsSxS¬xssSx
16 simpl2 φSIsSxS¬xsSI
17 3 8 16 mrissd φSIsSxS¬xsSX
18 17 ssdifssd φSIsSxS¬xsSxX
19 8 2 15 18 mrcssd φSIsSxS¬xsNsNSx
20 difssd φSIsSxS¬xsSxS
21 8 2 20 17 mrcssd φSIsSxS¬xsNSxNS
22 8 2 17 mrcssidd φSIsSxS¬xsSNS
23 simprl φSIsSxS¬xsxS
24 22 23 sseldd φSIsSxS¬xsxNS
25 2 3 8 16 23 ismri2dad φSIsSxS¬xs¬xNSx
26 21 24 25 ssnelpssd φSIsSxS¬xsNSxNS
27 19 26 sspsstrd φSIsSxS¬xsNsNS
28 6 27 exlimddv φSIsSNsNS
29 28 3expia φSIsSNsNS
30 29 alrimiv φSIssSNsNS
31 30 ex φSIssSNsNS
32 1 adantr φxSAMooreX
33 32 elfvexd φxSXV
34 4 adantr φxSSX
35 33 34 ssexd φxSSV
36 35 difexd φxSSxV
37 simp1r φxSs=SxsSNsNSxS
38 difsnpss xSSxS
39 37 38 sylib φxSs=SxsSNsNSSxS
40 simp2 φxSs=SxsSNsNSs=Sx
41 40 psseq1d φxSs=SxsSNsNSsSSxS
42 39 41 mpbird φxSs=SxsSNsNSsS
43 simp3 φxSs=SxsSNsNSsSNsNS
44 42 43 mpd φxSs=SxsSNsNSNsNS
45 40 fveq2d φxSs=SxsSNsNSNs=NSx
46 45 psseq1d φxSs=SxsSNsNSNsNSNSxNS
47 44 46 mpbid φxSs=SxsSNsNSNSxNS
48 47 3expia φxSs=SxsSNsNSNSxNS
49 36 48 spcimdv φxSssSNsNSNSxNS
50 49 3impia φxSssSNsNSNSxNS
51 50 pssned φxSssSNsNSNSxNS
52 51 3com23 φssSNsNSxSNSxNS
53 1 3ad2ant1 φssSNsNSxSAMooreX
54 4 3ad2ant1 φssSNsNSxSSX
55 simp3 φssSNsNSxSxS
56 53 2 54 55 mrieqvlemd φssSNsNSxSxNSxNSx=NS
57 56 necon3bbid φssSNsNSxS¬xNSxNSxNS
58 52 57 mpbird φssSNsNSxS¬xNSx
59 58 3expia φssSNsNSxS¬xNSx
60 59 ralrimiv φssSNsNSxS¬xNSx
61 60 ex φssSNsNSxS¬xNSx
62 2 3 1 4 ismri2d φSIxS¬xNSx
63 61 62 sylibrd φssSNsNSSI
64 31 63 impbid φSIssSNsNS