Metamath Proof Explorer


Theorem mrsubcn

Description: A substitution does not change the value of constant substrings. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mrsubccat.s S=mRSubstT
mrsubccat.r R=mRExT
mrsubcn.v V=mVRT
mrsubcn.c C=mCNT
Assertion mrsubcn FranSXCVF⟨“X”⟩=⟨“X”⟩

Proof

Step Hyp Ref Expression
1 mrsubccat.s S=mRSubstT
2 mrsubccat.r R=mRExT
3 mrsubcn.v V=mVRT
4 mrsubcn.c C=mCNT
5 n0i FranS¬ranS=
6 1 rnfvprc ¬TVranS=
7 5 6 nsyl2 FranSTV
8 3 2 1 mrsubff TVS:R𝑝𝑚VRR
9 ffun S:R𝑝𝑚VRRFunS
10 7 8 9 3syl FranSFunS
11 3 2 1 mrsubrn ranS=SRV
12 11 eleq2i FranSFSRV
13 12 biimpi FranSFSRV
14 fvelima FunSFSRVfRVSf=F
15 10 13 14 syl2anc FranSfRVSf=F
16 elmapi fRVf:VR
17 16 adantl XCVfRVf:VR
18 ssidd XCVfRVVV
19 eldifi XCVXC
20 elun1 XCXCV
21 19 20 syl XCVXCV
22 21 adantr XCVfRVXCV
23 4 3 2 1 mrsubcv f:VRVVXCVSf⟨“X”⟩=ifXVfX⟨“X”⟩
24 17 18 22 23 syl3anc XCVfRVSf⟨“X”⟩=ifXVfX⟨“X”⟩
25 eldifn XCV¬XV
26 25 adantr XCVfRV¬XV
27 26 iffalsed XCVfRVifXVfX⟨“X”⟩=⟨“X”⟩
28 24 27 eqtrd XCVfRVSf⟨“X”⟩=⟨“X”⟩
29 fveq1 Sf=FSf⟨“X”⟩=F⟨“X”⟩
30 29 eqeq1d Sf=FSf⟨“X”⟩=⟨“X”⟩F⟨“X”⟩=⟨“X”⟩
31 28 30 syl5ibcom XCVfRVSf=FF⟨“X”⟩=⟨“X”⟩
32 31 rexlimdva XCVfRVSf=FF⟨“X”⟩=⟨“X”⟩
33 15 32 mpan9 FranSXCVF⟨“X”⟩=⟨“X”⟩