Metamath Proof Explorer


Theorem mrsubff1

Description: When restricted to complete mappings, the substitution-producing function is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mrsubvr.v V=mVRT
mrsubvr.r R=mRExT
mrsubvr.s S=mRSubstT
Assertion mrsubff1 TWSRV:RV1-1RR

Proof

Step Hyp Ref Expression
1 mrsubvr.v V=mVRT
2 mrsubvr.r R=mRExT
3 mrsubvr.s S=mRSubstT
4 1 2 3 mrsubff TWS:R𝑝𝑚VRR
5 mapsspm RVR𝑝𝑚V
6 5 a1i TWRVR𝑝𝑚V
7 4 6 fssresd TWSRV:RVRR
8 fveq1 Sf=SgSf⟨“v”⟩=Sg⟨“v”⟩
9 simplrl TWfRVgRVvVfRV
10 elmapi fRVf:VR
11 9 10 syl TWfRVgRVvVf:VR
12 ssidd TWfRVgRVvVVV
13 simpr TWfRVgRVvVvV
14 1 2 3 mrsubvr f:VRVVvVSf⟨“v”⟩=fv
15 11 12 13 14 syl3anc TWfRVgRVvVSf⟨“v”⟩=fv
16 simplrr TWfRVgRVvVgRV
17 elmapi gRVg:VR
18 16 17 syl TWfRVgRVvVg:VR
19 1 2 3 mrsubvr g:VRVVvVSg⟨“v”⟩=gv
20 18 12 13 19 syl3anc TWfRVgRVvVSg⟨“v”⟩=gv
21 15 20 eqeq12d TWfRVgRVvVSf⟨“v”⟩=Sg⟨“v”⟩fv=gv
22 8 21 imbitrid TWfRVgRVvVSf=Sgfv=gv
23 22 ralrimdva TWfRVgRVSf=SgvVfv=gv
24 fvres fRVSRVf=Sf
25 fvres gRVSRVg=Sg
26 24 25 eqeqan12d fRVgRVSRVf=SRVgSf=Sg
27 26 adantl TWfRVgRVSRVf=SRVgSf=Sg
28 ffn f:VRfFnV
29 ffn g:VRgFnV
30 eqfnfv fFnVgFnVf=gvVfv=gv
31 28 29 30 syl2an f:VRg:VRf=gvVfv=gv
32 10 17 31 syl2an fRVgRVf=gvVfv=gv
33 32 adantl TWfRVgRVf=gvVfv=gv
34 23 27 33 3imtr4d TWfRVgRVSRVf=SRVgf=g
35 34 ralrimivva TWfRVgRVSRVf=SRVgf=g
36 dff13 SRV:RV1-1RRSRV:RVRRfRVgRVSRVf=SRVgf=g
37 7 35 36 sylanbrc TWSRV:RV1-1RR