Metamath Proof Explorer


Theorem mulgz

Description: A group multiple of the identity, for integer multiple. (Contributed by Mario Carneiro, 13-Dec-2014)

Ref Expression
Hypotheses mulgnn0z.b B = Base G
mulgnn0z.t · ˙ = G
mulgnn0z.o 0 ˙ = 0 G
Assertion mulgz G Grp N N · ˙ 0 ˙ = 0 ˙

Proof

Step Hyp Ref Expression
1 mulgnn0z.b B = Base G
2 mulgnn0z.t · ˙ = G
3 mulgnn0z.o 0 ˙ = 0 G
4 grpmnd G Grp G Mnd
5 4 adantr G Grp N G Mnd
6 1 2 3 mulgnn0z G Mnd N 0 N · ˙ 0 ˙ = 0 ˙
7 5 6 sylan G Grp N N 0 N · ˙ 0 ˙ = 0 ˙
8 simpll G Grp N N 0 G Grp
9 nn0z N 0 N
10 9 adantl G Grp N N 0 N
11 1 3 grpidcl G Grp 0 ˙ B
12 11 ad2antrr G Grp N N 0 0 ˙ B
13 eqid inv g G = inv g G
14 1 2 13 mulgneg G Grp N 0 ˙ B -N · ˙ 0 ˙ = inv g G -N · ˙ 0 ˙
15 8 10 12 14 syl3anc G Grp N N 0 -N · ˙ 0 ˙ = inv g G -N · ˙ 0 ˙
16 zcn N N
17 16 ad2antlr G Grp N N 0 N
18 17 negnegd G Grp N N 0 -N = N
19 18 oveq1d G Grp N N 0 -N · ˙ 0 ˙ = N · ˙ 0 ˙
20 1 2 3 mulgnn0z G Mnd N 0 -N · ˙ 0 ˙ = 0 ˙
21 5 20 sylan G Grp N N 0 -N · ˙ 0 ˙ = 0 ˙
22 21 fveq2d G Grp N N 0 inv g G -N · ˙ 0 ˙ = inv g G 0 ˙
23 3 13 grpinvid G Grp inv g G 0 ˙ = 0 ˙
24 23 ad2antrr G Grp N N 0 inv g G 0 ˙ = 0 ˙
25 22 24 eqtrd G Grp N N 0 inv g G -N · ˙ 0 ˙ = 0 ˙
26 15 19 25 3eqtr3d G Grp N N 0 N · ˙ 0 ˙ = 0 ˙
27 elznn0 N N N 0 N 0
28 27 simprbi N N 0 N 0
29 28 adantl G Grp N N 0 N 0
30 7 26 29 mpjaodan G Grp N N · ˙ 0 ˙ = 0 ˙