| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulsproplem.1 |  | 
						
							| 2 |  | mulsproplem9.1 |  | 
						
							| 3 |  | mulsproplem9.2 |  | 
						
							| 4 |  | eqid |  | 
						
							| 5 | 4 | rnmpo |  | 
						
							| 6 |  | fvex |  | 
						
							| 7 |  | fvex |  | 
						
							| 8 | 6 7 | mpoex |  | 
						
							| 9 | 8 | rnex |  | 
						
							| 10 | 5 9 | eqeltrri |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 | 11 | rnmpo |  | 
						
							| 13 |  | fvex |  | 
						
							| 14 |  | fvex |  | 
						
							| 15 | 13 14 | mpoex |  | 
						
							| 16 | 15 | rnex |  | 
						
							| 17 | 12 16 | eqeltrri |  | 
						
							| 18 | 10 17 | unex |  | 
						
							| 19 | 18 | a1i |  | 
						
							| 20 |  | eqid |  | 
						
							| 21 | 20 | rnmpo |  | 
						
							| 22 | 6 14 | mpoex |  | 
						
							| 23 | 22 | rnex |  | 
						
							| 24 | 21 23 | eqeltrri |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 | 25 | rnmpo |  | 
						
							| 27 | 13 7 | mpoex |  | 
						
							| 28 | 27 | rnex |  | 
						
							| 29 | 26 28 | eqeltrri |  | 
						
							| 30 | 24 29 | unex |  | 
						
							| 31 | 30 | a1i |  | 
						
							| 32 | 1 | adantr |  | 
						
							| 33 |  | leftssold |  | 
						
							| 34 |  | simprl |  | 
						
							| 35 | 33 34 | sselid |  | 
						
							| 36 | 3 | adantr |  | 
						
							| 37 | 32 35 36 | mulsproplem2 |  | 
						
							| 38 | 2 | adantr |  | 
						
							| 39 |  | leftssold |  | 
						
							| 40 |  | simprr |  | 
						
							| 41 | 39 40 | sselid |  | 
						
							| 42 | 32 38 41 | mulsproplem3 |  | 
						
							| 43 | 37 42 | addscld |  | 
						
							| 44 | 32 35 41 | mulsproplem4 |  | 
						
							| 45 | 43 44 | subscld |  | 
						
							| 46 |  | eleq1 |  | 
						
							| 47 | 45 46 | syl5ibrcom |  | 
						
							| 48 | 47 | rexlimdvva |  | 
						
							| 49 | 48 | abssdv |  | 
						
							| 50 | 1 | adantr |  | 
						
							| 51 |  | rightssold |  | 
						
							| 52 |  | simprl |  | 
						
							| 53 | 51 52 | sselid |  | 
						
							| 54 | 3 | adantr |  | 
						
							| 55 | 50 53 54 | mulsproplem2 |  | 
						
							| 56 | 2 | adantr |  | 
						
							| 57 |  | rightssold |  | 
						
							| 58 |  | simprr |  | 
						
							| 59 | 57 58 | sselid |  | 
						
							| 60 | 50 56 59 | mulsproplem3 |  | 
						
							| 61 | 55 60 | addscld |  | 
						
							| 62 | 50 53 59 | mulsproplem4 |  | 
						
							| 63 | 61 62 | subscld |  | 
						
							| 64 |  | eleq1 |  | 
						
							| 65 | 63 64 | syl5ibrcom |  | 
						
							| 66 | 65 | rexlimdvva |  | 
						
							| 67 | 66 | abssdv |  | 
						
							| 68 | 49 67 | unssd |  | 
						
							| 69 | 1 | adantr |  | 
						
							| 70 |  | simprl |  | 
						
							| 71 | 33 70 | sselid |  | 
						
							| 72 | 3 | adantr |  | 
						
							| 73 | 69 71 72 | mulsproplem2 |  | 
						
							| 74 | 2 | adantr |  | 
						
							| 75 |  | simprr |  | 
						
							| 76 | 57 75 | sselid |  | 
						
							| 77 | 69 74 76 | mulsproplem3 |  | 
						
							| 78 | 73 77 | addscld |  | 
						
							| 79 | 69 71 76 | mulsproplem4 |  | 
						
							| 80 | 78 79 | subscld |  | 
						
							| 81 |  | eleq1 |  | 
						
							| 82 | 80 81 | syl5ibrcom |  | 
						
							| 83 | 82 | rexlimdvva |  | 
						
							| 84 | 83 | abssdv |  | 
						
							| 85 | 1 | adantr |  | 
						
							| 86 |  | simprl |  | 
						
							| 87 | 51 86 | sselid |  | 
						
							| 88 | 3 | adantr |  | 
						
							| 89 | 85 87 88 | mulsproplem2 |  | 
						
							| 90 | 2 | adantr |  | 
						
							| 91 |  | simprr |  | 
						
							| 92 | 39 91 | sselid |  | 
						
							| 93 | 85 90 92 | mulsproplem3 |  | 
						
							| 94 | 89 93 | addscld |  | 
						
							| 95 | 85 87 92 | mulsproplem4 |  | 
						
							| 96 | 94 95 | subscld |  | 
						
							| 97 |  | eleq1 |  | 
						
							| 98 | 96 97 | syl5ibrcom |  | 
						
							| 99 | 98 | rexlimdvva |  | 
						
							| 100 | 99 | abssdv |  | 
						
							| 101 | 84 100 | unssd |  | 
						
							| 102 |  | elun |  | 
						
							| 103 |  | vex |  | 
						
							| 104 |  | eqeq1 |  | 
						
							| 105 | 104 | 2rexbidv |  | 
						
							| 106 | 103 105 | elab |  | 
						
							| 107 |  | eqeq1 |  | 
						
							| 108 | 107 | 2rexbidv |  | 
						
							| 109 | 103 108 | elab |  | 
						
							| 110 | 106 109 | orbi12i |  | 
						
							| 111 | 102 110 | bitri |  | 
						
							| 112 |  | elun |  | 
						
							| 113 |  | vex |  | 
						
							| 114 |  | eqeq1 |  | 
						
							| 115 | 114 | 2rexbidv |  | 
						
							| 116 | 113 115 | elab |  | 
						
							| 117 |  | eqeq1 |  | 
						
							| 118 | 117 | 2rexbidv |  | 
						
							| 119 | 113 118 | elab |  | 
						
							| 120 | 116 119 | orbi12i |  | 
						
							| 121 | 112 120 | bitri |  | 
						
							| 122 | 111 121 | anbi12i |  | 
						
							| 123 |  | anddi |  | 
						
							| 124 | 122 123 | bitri |  | 
						
							| 125 | 1 | adantr |  | 
						
							| 126 | 2 | adantr |  | 
						
							| 127 | 3 | adantr |  | 
						
							| 128 |  | simprll |  | 
						
							| 129 |  | simprlr |  | 
						
							| 130 |  | simprrl |  | 
						
							| 131 |  | simprrr |  | 
						
							| 132 | 125 126 127 128 129 130 131 | mulsproplem5 |  | 
						
							| 133 |  | breq2 |  | 
						
							| 134 | 132 133 | syl5ibrcom |  | 
						
							| 135 | 134 | anassrs |  | 
						
							| 136 | 135 | rexlimdvva |  | 
						
							| 137 |  | breq1 |  | 
						
							| 138 | 137 | imbi2d |  | 
						
							| 139 | 136 138 | syl5ibrcom |  | 
						
							| 140 | 139 | rexlimdvva |  | 
						
							| 141 | 140 | impd |  | 
						
							| 142 | 1 | adantr |  | 
						
							| 143 | 2 | adantr |  | 
						
							| 144 | 3 | adantr |  | 
						
							| 145 |  | simprll |  | 
						
							| 146 |  | simprlr |  | 
						
							| 147 |  | simprrl |  | 
						
							| 148 |  | simprrr |  | 
						
							| 149 | 142 143 144 145 146 147 148 | mulsproplem6 |  | 
						
							| 150 |  | breq2 |  | 
						
							| 151 | 149 150 | syl5ibrcom |  | 
						
							| 152 | 151 | anassrs |  | 
						
							| 153 | 152 | rexlimdvva |  | 
						
							| 154 | 137 | imbi2d |  | 
						
							| 155 | 153 154 | syl5ibrcom |  | 
						
							| 156 | 155 | rexlimdvva |  | 
						
							| 157 | 156 | impd |  | 
						
							| 158 | 141 157 | jaod |  | 
						
							| 159 | 1 | adantr |  | 
						
							| 160 | 2 | adantr |  | 
						
							| 161 | 3 | adantr |  | 
						
							| 162 |  | simprll |  | 
						
							| 163 |  | simprlr |  | 
						
							| 164 |  | simprrl |  | 
						
							| 165 |  | simprrr |  | 
						
							| 166 | 159 160 161 162 163 164 165 | mulsproplem7 |  | 
						
							| 167 |  | breq2 |  | 
						
							| 168 | 166 167 | syl5ibrcom |  | 
						
							| 169 | 168 | anassrs |  | 
						
							| 170 | 169 | rexlimdvva |  | 
						
							| 171 |  | breq1 |  | 
						
							| 172 | 171 | imbi2d |  | 
						
							| 173 | 170 172 | syl5ibrcom |  | 
						
							| 174 | 173 | rexlimdvva |  | 
						
							| 175 | 174 | impd |  | 
						
							| 176 | 1 | adantr |  | 
						
							| 177 | 2 | adantr |  | 
						
							| 178 | 3 | adantr |  | 
						
							| 179 |  | simprll |  | 
						
							| 180 |  | simprlr |  | 
						
							| 181 |  | simprrl |  | 
						
							| 182 |  | simprrr |  | 
						
							| 183 | 176 177 178 179 180 181 182 | mulsproplem8 |  | 
						
							| 184 |  | breq2 |  | 
						
							| 185 | 183 184 | syl5ibrcom |  | 
						
							| 186 | 185 | anassrs |  | 
						
							| 187 | 186 | rexlimdvva |  | 
						
							| 188 | 171 | imbi2d |  | 
						
							| 189 | 187 188 | syl5ibrcom |  | 
						
							| 190 | 189 | rexlimdvva |  | 
						
							| 191 | 190 | impd |  | 
						
							| 192 | 175 191 | jaod |  | 
						
							| 193 | 158 192 | jaod |  | 
						
							| 194 | 124 193 | biimtrid |  | 
						
							| 195 | 194 | 3impib |  | 
						
							| 196 | 19 31 68 101 195 | ssltd |  |