Metamath Proof Explorer


Theorem n4cyclfrgr

Description: There is no 4-cycle in a friendship graph, see Proposition 1(a) of MertziosUnger p. 153 : "A friendship graph G contains no C4 as a subgraph ...". (Contributed by Alexander van der Vekens, 19-Nov-2017) (Revised by AV, 2-Apr-2021)

Ref Expression
Assertion n4cyclfrgr GFriendGraphFCyclesGPF4

Proof

Step Hyp Ref Expression
1 frgrusgr GFriendGraphGUSGraph
2 usgrupgr GUSGraphGUPGraph
3 1 2 syl GFriendGraphGUPGraph
4 eqid VtxG=VtxG
5 eqid EdgG=EdgG
6 4 5 upgr4cycl4dv4e GUPGraphFCyclesGPF=4aVtxGbVtxGcVtxGdVtxGabEdgGbcEdgGcdEdgGdaEdgGabacadbcbdcd
7 4 5 isfrgr GFriendGraphGUSGraphkVtxGlVtxGk∃!xVtxGxkxlEdgG
8 simplrl aVtxGbVtxGcVtxGdVtxGabEdgGbcEdgGcdEdgGdaEdgGabacadbcbdcdcVtxG
9 necom acca
10 9 biimpi acca
11 10 3ad2ant2 abacadca
12 11 ad2antrl abEdgGbcEdgGcdEdgGdaEdgGabacadbcbdcdca
13 12 adantl aVtxGbVtxGcVtxGdVtxGabEdgGbcEdgGcdEdgGdaEdgGabacadbcbdcdca
14 eldifsn cVtxGacVtxGca
15 8 13 14 sylanbrc aVtxGbVtxGcVtxGdVtxGabEdgGbcEdgGcdEdgGdaEdgGabacadbcbdcdcVtxGa
16 sneq k=ak=a
17 16 difeq2d k=aVtxGk=VtxGa
18 preq2 k=axk=xa
19 18 preq1d k=axkxl=xaxl
20 19 sseq1d k=axkxlEdgGxaxlEdgG
21 20 reubidv k=a∃!xVtxGxkxlEdgG∃!xVtxGxaxlEdgG
22 17 21 raleqbidv k=alVtxGk∃!xVtxGxkxlEdgGlVtxGa∃!xVtxGxaxlEdgG
23 22 rspcv aVtxGkVtxGlVtxGk∃!xVtxGxkxlEdgGlVtxGa∃!xVtxGxaxlEdgG
24 23 ad3antrrr aVtxGbVtxGcVtxGdVtxGabEdgGbcEdgGcdEdgGdaEdgGabacadbcbdcdkVtxGlVtxGk∃!xVtxGxkxlEdgGlVtxGa∃!xVtxGxaxlEdgG
25 preq2 l=cxl=xc
26 25 preq2d l=cxaxl=xaxc
27 26 sseq1d l=cxaxlEdgGxaxcEdgG
28 27 reubidv l=c∃!xVtxGxaxlEdgG∃!xVtxGxaxcEdgG
29 28 rspcv cVtxGalVtxGa∃!xVtxGxaxlEdgG∃!xVtxGxaxcEdgG
30 15 24 29 sylsyld aVtxGbVtxGcVtxGdVtxGabEdgGbcEdgGcdEdgGdaEdgGabacadbcbdcdkVtxGlVtxGk∃!xVtxGxkxlEdgG∃!xVtxGxaxcEdgG
31 prcom xa=ax
32 31 preq1i xaxc=axxc
33 32 sseq1i xaxcEdgGaxxcEdgG
34 33 reubii ∃!xVtxGxaxcEdgG∃!xVtxGaxxcEdgG
35 simprll aVtxGbVtxGcVtxGdVtxGabEdgGbcEdgGcdEdgGdaEdgGabacadbcbdcdabEdgGbcEdgG
36 simprlr aVtxGbVtxGcVtxGdVtxGabEdgGbcEdgGcdEdgGdaEdgGabacadbcbdcdcdEdgGdaEdgG
37 simpllr aVtxGbVtxGcVtxGdVtxGabEdgGbcEdgGcdEdgGdaEdgGabacadbcbdcdbVtxG
38 simplrr aVtxGbVtxGcVtxGdVtxGabEdgGbcEdgGcdEdgGdaEdgGabacadbcbdcddVtxG
39 simprr2 abEdgGbcEdgGcdEdgGdaEdgGabacadbcbdcdbd
40 39 adantl aVtxGbVtxGcVtxGdVtxGabEdgGbcEdgGcdEdgGdaEdgGabacadbcbdcdbd
41 4cycl2vnunb abEdgGbcEdgGcdEdgGdaEdgGbVtxGdVtxGbd¬∃!xVtxGaxxcEdgG
42 35 36 37 38 40 41 syl113anc aVtxGbVtxGcVtxGdVtxGabEdgGbcEdgGcdEdgGdaEdgGabacadbcbdcd¬∃!xVtxGaxxcEdgG
43 42 pm2.21d aVtxGbVtxGcVtxGdVtxGabEdgGbcEdgGcdEdgGdaEdgGabacadbcbdcd∃!xVtxGaxxcEdgGF4
44 43 com12 ∃!xVtxGaxxcEdgGaVtxGbVtxGcVtxGdVtxGabEdgGbcEdgGcdEdgGdaEdgGabacadbcbdcdF4
45 34 44 sylbi ∃!xVtxGxaxcEdgGaVtxGbVtxGcVtxGdVtxGabEdgGbcEdgGcdEdgGdaEdgGabacadbcbdcdF4
46 30 45 syl6 aVtxGbVtxGcVtxGdVtxGabEdgGbcEdgGcdEdgGdaEdgGabacadbcbdcdkVtxGlVtxGk∃!xVtxGxkxlEdgGaVtxGbVtxGcVtxGdVtxGabEdgGbcEdgGcdEdgGdaEdgGabacadbcbdcdF4
47 46 pm2.43b kVtxGlVtxGk∃!xVtxGxkxlEdgGaVtxGbVtxGcVtxGdVtxGabEdgGbcEdgGcdEdgGdaEdgGabacadbcbdcdF4
48 47 adantl GUSGraphkVtxGlVtxGk∃!xVtxGxkxlEdgGaVtxGbVtxGcVtxGdVtxGabEdgGbcEdgGcdEdgGdaEdgGabacadbcbdcdF4
49 7 48 sylbi GFriendGraphaVtxGbVtxGcVtxGdVtxGabEdgGbcEdgGcdEdgGdaEdgGabacadbcbdcdF4
50 49 expdcom aVtxGbVtxGcVtxGdVtxGabEdgGbcEdgGcdEdgGdaEdgGabacadbcbdcdGFriendGraphF4
51 50 rexlimdvva aVtxGbVtxGcVtxGdVtxGabEdgGbcEdgGcdEdgGdaEdgGabacadbcbdcdGFriendGraphF4
52 51 rexlimivv aVtxGbVtxGcVtxGdVtxGabEdgGbcEdgGcdEdgGdaEdgGabacadbcbdcdGFriendGraphF4
53 6 52 syl GUPGraphFCyclesGPF=4GFriendGraphF4
54 53 3exp GUPGraphFCyclesGPF=4GFriendGraphF4
55 54 com34 GUPGraphFCyclesGPGFriendGraphF=4F4
56 55 com23 GUPGraphGFriendGraphFCyclesGPF=4F4
57 3 56 mpcom GFriendGraphFCyclesGPF=4F4
58 57 imp GFriendGraphFCyclesGPF=4F4
59 neqne ¬F=4F4
60 58 59 pm2.61d1 GFriendGraphFCyclesGPF4