Description: There is no 4-cycle in a friendship graph, see Proposition 1(a) of MertziosUnger p. 153 : "A friendship graph G contains no C4 as a subgraph ...". (Contributed by Alexander van der Vekens, 19-Nov-2017) (Revised by AV, 2-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | n4cyclfrgr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrusgr | |
|
2 | usgrupgr | |
|
3 | 1 2 | syl | |
4 | eqid | |
|
5 | eqid | |
|
6 | 4 5 | upgr4cycl4dv4e | |
7 | 4 5 | isfrgr | |
8 | simplrl | |
|
9 | necom | |
|
10 | 9 | biimpi | |
11 | 10 | 3ad2ant2 | |
12 | 11 | ad2antrl | |
13 | 12 | adantl | |
14 | eldifsn | |
|
15 | 8 13 14 | sylanbrc | |
16 | sneq | |
|
17 | 16 | difeq2d | |
18 | preq2 | |
|
19 | 18 | preq1d | |
20 | 19 | sseq1d | |
21 | 20 | reubidv | |
22 | 17 21 | raleqbidv | |
23 | 22 | rspcv | |
24 | 23 | ad3antrrr | |
25 | preq2 | |
|
26 | 25 | preq2d | |
27 | 26 | sseq1d | |
28 | 27 | reubidv | |
29 | 28 | rspcv | |
30 | 15 24 29 | sylsyld | |
31 | prcom | |
|
32 | 31 | preq1i | |
33 | 32 | sseq1i | |
34 | 33 | reubii | |
35 | simprll | |
|
36 | simprlr | |
|
37 | simpllr | |
|
38 | simplrr | |
|
39 | simprr2 | |
|
40 | 39 | adantl | |
41 | 4cycl2vnunb | |
|
42 | 35 36 37 38 40 41 | syl113anc | |
43 | 42 | pm2.21d | |
44 | 43 | com12 | |
45 | 34 44 | sylbi | |
46 | 30 45 | syl6 | |
47 | 46 | pm2.43b | |
48 | 47 | adantl | |
49 | 7 48 | sylbi | |
50 | 49 | expdcom | |
51 | 50 | rexlimdvva | |
52 | 51 | rexlimivv | |
53 | 6 52 | syl | |
54 | 53 | 3exp | |
55 | 54 | com34 | |
56 | 55 | com23 | |
57 | 3 56 | mpcom | |
58 | 57 | imp | |
59 | neqne | |
|
60 | 58 59 | pm2.61d1 | |