Metamath Proof Explorer


Theorem n4cyclfrgr

Description: There is no 4-cycle in a friendship graph, see Proposition 1(a) of MertziosUnger p. 153 : "A friendship graph G contains no C4 as a subgraph ...". (Contributed by Alexander van der Vekens, 19-Nov-2017) (Revised by AV, 2-Apr-2021)

Ref Expression
Assertion n4cyclfrgr G FriendGraph F Cycles G P F 4

Proof

Step Hyp Ref Expression
1 frgrusgr G FriendGraph G USGraph
2 usgrupgr G USGraph G UPGraph
3 1 2 syl G FriendGraph G UPGraph
4 eqid Vtx G = Vtx G
5 eqid Edg G = Edg G
6 4 5 upgr4cycl4dv4e G UPGraph F Cycles G P F = 4 a Vtx G b Vtx G c Vtx G d Vtx G a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d
7 4 5 isfrgr G FriendGraph G USGraph k Vtx G l Vtx G k ∃! x Vtx G x k x l Edg G
8 simplrl a Vtx G b Vtx G c Vtx G d Vtx G a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d c Vtx G
9 necom a c c a
10 9 biimpi a c c a
11 10 3ad2ant2 a b a c a d c a
12 11 ad2antrl a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d c a
13 12 adantl a Vtx G b Vtx G c Vtx G d Vtx G a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d c a
14 eldifsn c Vtx G a c Vtx G c a
15 8 13 14 sylanbrc a Vtx G b Vtx G c Vtx G d Vtx G a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d c Vtx G a
16 sneq k = a k = a
17 16 difeq2d k = a Vtx G k = Vtx G a
18 preq2 k = a x k = x a
19 18 preq1d k = a x k x l = x a x l
20 19 sseq1d k = a x k x l Edg G x a x l Edg G
21 20 reubidv k = a ∃! x Vtx G x k x l Edg G ∃! x Vtx G x a x l Edg G
22 17 21 raleqbidv k = a l Vtx G k ∃! x Vtx G x k x l Edg G l Vtx G a ∃! x Vtx G x a x l Edg G
23 22 rspcv a Vtx G k Vtx G l Vtx G k ∃! x Vtx G x k x l Edg G l Vtx G a ∃! x Vtx G x a x l Edg G
24 23 ad3antrrr a Vtx G b Vtx G c Vtx G d Vtx G a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d k Vtx G l Vtx G k ∃! x Vtx G x k x l Edg G l Vtx G a ∃! x Vtx G x a x l Edg G
25 preq2 l = c x l = x c
26 25 preq2d l = c x a x l = x a x c
27 26 sseq1d l = c x a x l Edg G x a x c Edg G
28 27 reubidv l = c ∃! x Vtx G x a x l Edg G ∃! x Vtx G x a x c Edg G
29 28 rspcv c Vtx G a l Vtx G a ∃! x Vtx G x a x l Edg G ∃! x Vtx G x a x c Edg G
30 15 24 29 sylsyld a Vtx G b Vtx G c Vtx G d Vtx G a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d k Vtx G l Vtx G k ∃! x Vtx G x k x l Edg G ∃! x Vtx G x a x c Edg G
31 prcom x a = a x
32 31 preq1i x a x c = a x x c
33 32 sseq1i x a x c Edg G a x x c Edg G
34 33 reubii ∃! x Vtx G x a x c Edg G ∃! x Vtx G a x x c Edg G
35 simprll a Vtx G b Vtx G c Vtx G d Vtx G a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d a b Edg G b c Edg G
36 simprlr a Vtx G b Vtx G c Vtx G d Vtx G a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d c d Edg G d a Edg G
37 simpllr a Vtx G b Vtx G c Vtx G d Vtx G a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d b Vtx G
38 simplrr a Vtx G b Vtx G c Vtx G d Vtx G a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d d Vtx G
39 simprr2 a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d b d
40 39 adantl a Vtx G b Vtx G c Vtx G d Vtx G a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d b d
41 4cycl2vnunb a b Edg G b c Edg G c d Edg G d a Edg G b Vtx G d Vtx G b d ¬ ∃! x Vtx G a x x c Edg G
42 35 36 37 38 40 41 syl113anc a Vtx G b Vtx G c Vtx G d Vtx G a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d ¬ ∃! x Vtx G a x x c Edg G
43 42 pm2.21d a Vtx G b Vtx G c Vtx G d Vtx G a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d ∃! x Vtx G a x x c Edg G F 4
44 43 com12 ∃! x Vtx G a x x c Edg G a Vtx G b Vtx G c Vtx G d Vtx G a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d F 4
45 34 44 sylbi ∃! x Vtx G x a x c Edg G a Vtx G b Vtx G c Vtx G d Vtx G a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d F 4
46 30 45 syl6 a Vtx G b Vtx G c Vtx G d Vtx G a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d k Vtx G l Vtx G k ∃! x Vtx G x k x l Edg G a Vtx G b Vtx G c Vtx G d Vtx G a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d F 4
47 46 pm2.43b k Vtx G l Vtx G k ∃! x Vtx G x k x l Edg G a Vtx G b Vtx G c Vtx G d Vtx G a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d F 4
48 47 adantl G USGraph k Vtx G l Vtx G k ∃! x Vtx G x k x l Edg G a Vtx G b Vtx G c Vtx G d Vtx G a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d F 4
49 7 48 sylbi G FriendGraph a Vtx G b Vtx G c Vtx G d Vtx G a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d F 4
50 49 expdcom a Vtx G b Vtx G c Vtx G d Vtx G a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d G FriendGraph F 4
51 50 rexlimdvva a Vtx G b Vtx G c Vtx G d Vtx G a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d G FriendGraph F 4
52 51 rexlimivv a Vtx G b Vtx G c Vtx G d Vtx G a b Edg G b c Edg G c d Edg G d a Edg G a b a c a d b c b d c d G FriendGraph F 4
53 6 52 syl G UPGraph F Cycles G P F = 4 G FriendGraph F 4
54 53 3exp G UPGraph F Cycles G P F = 4 G FriendGraph F 4
55 54 com34 G UPGraph F Cycles G P G FriendGraph F = 4 F 4
56 55 com23 G UPGraph G FriendGraph F Cycles G P F = 4 F 4
57 3 56 mpcom G FriendGraph F Cycles G P F = 4 F 4
58 57 imp G FriendGraph F Cycles G P F = 4 F 4
59 neqne ¬ F = 4 F 4
60 58 59 pm2.61d1 G FriendGraph F Cycles G P F 4