Metamath Proof Explorer


Theorem naddcnfass

Description: Component-wise addition of Cantor normal forms is associative. (Contributed by RP, 3-Jan-2025)

Ref Expression
Assertion naddcnfass XOnS=domωCNFXFSGSHSF+𝑜fG+𝑜fH=F+𝑜fG+𝑜fH

Proof

Step Hyp Ref Expression
1 simpr XOnS=domωCNFXS=domωCNFX
2 1 eleq2d XOnS=domωCNFXFSFdomωCNFX
3 eqid domωCNFX=domωCNFX
4 omelon ωOn
5 4 a1i XOnS=domωCNFXωOn
6 simpl XOnS=domωCNFXXOn
7 3 5 6 cantnfs XOnS=domωCNFXFdomωCNFXF:XωfinSuppF
8 2 7 bitrd XOnS=domωCNFXFSF:XωfinSuppF
9 simpl F:XωfinSuppFF:Xω
10 9 ffnd F:XωfinSuppFFFnX
11 8 10 syl6bi XOnS=domωCNFXFSFFnX
12 simp1 FSGSHSFS
13 11 12 impel XOnS=domωCNFXFSGSHSFFnX
14 1 eleq2d XOnS=domωCNFXGSGdomωCNFX
15 3 5 6 cantnfs XOnS=domωCNFXGdomωCNFXG:XωfinSuppG
16 14 15 bitrd XOnS=domωCNFXGSG:XωfinSuppG
17 simpl G:XωfinSuppGG:Xω
18 17 ffnd G:XωfinSuppGGFnX
19 16 18 syl6bi XOnS=domωCNFXGSGFnX
20 simp2 FSGSHSGS
21 19 20 impel XOnS=domωCNFXFSGSHSGFnX
22 6 adantr XOnS=domωCNFXFSGSHSXOn
23 inidm XX=X
24 13 21 22 22 23 offn XOnS=domωCNFXFSGSHSF+𝑜fGFnX
25 1 eleq2d XOnS=domωCNFXHSHdomωCNFX
26 3 5 6 cantnfs XOnS=domωCNFXHdomωCNFXH:XωfinSuppH
27 25 26 bitrd XOnS=domωCNFXHSH:XωfinSuppH
28 simpl H:XωfinSuppHH:Xω
29 28 ffnd H:XωfinSuppHHFnX
30 27 29 syl6bi XOnS=domωCNFXHSHFnX
31 simp3 FSGSHSHS
32 30 31 impel XOnS=domωCNFXFSGSHSHFnX
33 24 32 22 22 23 offn XOnS=domωCNFXFSGSHSF+𝑜fG+𝑜fHFnX
34 21 32 22 22 23 offn XOnS=domωCNFXFSGSHSG+𝑜fHFnX
35 13 34 22 22 23 offn XOnS=domωCNFXFSGSHSF+𝑜fG+𝑜fHFnX
36 8 9 syl6bi XOnS=domωCNFXFSF:Xω
37 36 12 impel XOnS=domωCNFXFSGSHSF:Xω
38 37 ffvelcdmda XOnS=domωCNFXFSGSHSxXFxω
39 16 17 syl6bi XOnS=domωCNFXGSG:Xω
40 39 20 impel XOnS=domωCNFXFSGSHSG:Xω
41 40 ffvelcdmda XOnS=domωCNFXFSGSHSxXGxω
42 27 28 syl6bi XOnS=domωCNFXHSH:Xω
43 42 31 impel XOnS=domωCNFXFSGSHSH:Xω
44 43 ffvelcdmda XOnS=domωCNFXFSGSHSxXHxω
45 nnaass FxωGxωHxωFx+𝑜Gx+𝑜Hx=Fx+𝑜Gx+𝑜Hx
46 38 41 44 45 syl3anc XOnS=domωCNFXFSGSHSxXFx+𝑜Gx+𝑜Hx=Fx+𝑜Gx+𝑜Hx
47 13 adantr XOnS=domωCNFXFSGSHSxXFFnX
48 21 adantr XOnS=domωCNFXFSGSHSxXGFnX
49 22 anim1i XOnS=domωCNFXFSGSHSxXXOnxX
50 fnfvof FFnXGFnXXOnxXF+𝑜fGx=Fx+𝑜Gx
51 47 48 49 50 syl21anc XOnS=domωCNFXFSGSHSxXF+𝑜fGx=Fx+𝑜Gx
52 51 oveq1d XOnS=domωCNFXFSGSHSxXF+𝑜fGx+𝑜Hx=Fx+𝑜Gx+𝑜Hx
53 32 adantr XOnS=domωCNFXFSGSHSxXHFnX
54 fnfvof GFnXHFnXXOnxXG+𝑜fHx=Gx+𝑜Hx
55 48 53 49 54 syl21anc XOnS=domωCNFXFSGSHSxXG+𝑜fHx=Gx+𝑜Hx
56 55 oveq2d XOnS=domωCNFXFSGSHSxXFx+𝑜G+𝑜fHx=Fx+𝑜Gx+𝑜Hx
57 46 52 56 3eqtr4d XOnS=domωCNFXFSGSHSxXF+𝑜fGx+𝑜Hx=Fx+𝑜G+𝑜fHx
58 24 adantr XOnS=domωCNFXFSGSHSxXF+𝑜fGFnX
59 fnfvof F+𝑜fGFnXHFnXXOnxXF+𝑜fG+𝑜fHx=F+𝑜fGx+𝑜Hx
60 58 53 49 59 syl21anc XOnS=domωCNFXFSGSHSxXF+𝑜fG+𝑜fHx=F+𝑜fGx+𝑜Hx
61 34 adantr XOnS=domωCNFXFSGSHSxXG+𝑜fHFnX
62 fnfvof FFnXG+𝑜fHFnXXOnxXF+𝑜fG+𝑜fHx=Fx+𝑜G+𝑜fHx
63 47 61 49 62 syl21anc XOnS=domωCNFXFSGSHSxXF+𝑜fG+𝑜fHx=Fx+𝑜G+𝑜fHx
64 57 60 63 3eqtr4d XOnS=domωCNFXFSGSHSxXF+𝑜fG+𝑜fHx=F+𝑜fG+𝑜fHx
65 33 35 64 eqfnfvd XOnS=domωCNFXFSGSHSF+𝑜fG+𝑜fH=F+𝑜fG+𝑜fH