| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|
| 2 |
1
|
eleq2d |
|
| 3 |
|
eqid |
|
| 4 |
|
omelon |
|
| 5 |
4
|
a1i |
|
| 6 |
|
simpl |
|
| 7 |
3 5 6
|
cantnfs |
|
| 8 |
2 7
|
bitrd |
|
| 9 |
|
simpl |
|
| 10 |
9
|
ffnd |
|
| 11 |
8 10
|
biimtrdi |
|
| 12 |
|
simp1 |
|
| 13 |
11 12
|
impel |
|
| 14 |
1
|
eleq2d |
|
| 15 |
3 5 6
|
cantnfs |
|
| 16 |
14 15
|
bitrd |
|
| 17 |
|
simpl |
|
| 18 |
17
|
ffnd |
|
| 19 |
16 18
|
biimtrdi |
|
| 20 |
|
simp2 |
|
| 21 |
19 20
|
impel |
|
| 22 |
6
|
adantr |
|
| 23 |
|
inidm |
|
| 24 |
13 21 22 22 23
|
offn |
|
| 25 |
1
|
eleq2d |
|
| 26 |
3 5 6
|
cantnfs |
|
| 27 |
25 26
|
bitrd |
|
| 28 |
|
simpl |
|
| 29 |
28
|
ffnd |
|
| 30 |
27 29
|
biimtrdi |
|
| 31 |
|
simp3 |
|
| 32 |
30 31
|
impel |
|
| 33 |
24 32 22 22 23
|
offn |
|
| 34 |
21 32 22 22 23
|
offn |
|
| 35 |
13 34 22 22 23
|
offn |
|
| 36 |
8 9
|
biimtrdi |
|
| 37 |
36 12
|
impel |
|
| 38 |
37
|
ffvelcdmda |
|
| 39 |
16 17
|
biimtrdi |
|
| 40 |
39 20
|
impel |
|
| 41 |
40
|
ffvelcdmda |
|
| 42 |
27 28
|
biimtrdi |
|
| 43 |
42 31
|
impel |
|
| 44 |
43
|
ffvelcdmda |
|
| 45 |
|
nnaass |
|
| 46 |
38 41 44 45
|
syl3anc |
|
| 47 |
13
|
adantr |
|
| 48 |
21
|
adantr |
|
| 49 |
22
|
anim1i |
|
| 50 |
|
fnfvof |
|
| 51 |
47 48 49 50
|
syl21anc |
|
| 52 |
51
|
oveq1d |
|
| 53 |
32
|
adantr |
|
| 54 |
|
fnfvof |
|
| 55 |
48 53 49 54
|
syl21anc |
|
| 56 |
55
|
oveq2d |
|
| 57 |
46 52 56
|
3eqtr4d |
|
| 58 |
24
|
adantr |
|
| 59 |
|
fnfvof |
|
| 60 |
58 53 49 59
|
syl21anc |
|
| 61 |
34
|
adantr |
|
| 62 |
|
fnfvof |
|
| 63 |
47 61 49 62
|
syl21anc |
|
| 64 |
57 60 63
|
3eqtr4d |
|
| 65 |
33 35 64
|
eqfnfvd |
|