Metamath Proof Explorer


Theorem naddwordnexlem3

Description: When A is the sum of a limit ordinal (or zero) and a natural number and B is the sum of a larger limit ordinal and a smaller natural number, every natural sum of A with a natural number is less that B . (Contributed by RP, 14-Feb-2025)

Ref Expression
Hypotheses naddwordnex.a φA=ω𝑜C+𝑜M
naddwordnex.b φB=ω𝑜D+𝑜N
naddwordnex.c φCD
naddwordnex.d φDOn
naddwordnex.m φMω
naddwordnex.n φNM
Assertion naddwordnexlem3 Could not format assertion : No typesetting found for |- ( ph -> A. x e. _om ( A +no x ) e. B ) with typecode |-

Proof

Step Hyp Ref Expression
1 naddwordnex.a φA=ω𝑜C+𝑜M
2 naddwordnex.b φB=ω𝑜D+𝑜N
3 naddwordnex.c φCD
4 naddwordnex.d φDOn
5 naddwordnex.m φMω
6 naddwordnex.n φNM
7 omelon ωOn
8 onelon DOnCDCOn
9 4 3 8 syl2anc φCOn
10 omcl ωOnCOnω𝑜COn
11 7 9 10 sylancr φω𝑜COn
12 nnon MωMOn
13 5 12 syl φMOn
14 oacl ω𝑜COnMOnω𝑜C+𝑜MOn
15 11 13 14 syl2anc φω𝑜C+𝑜MOn
16 1 15 eqeltrd φAOn
17 naddonnn Could not format ( ( A e. On /\ x e. _om ) -> ( A +o x ) = ( A +no x ) ) : No typesetting found for |- ( ( A e. On /\ x e. _om ) -> ( A +o x ) = ( A +no x ) ) with typecode |-
18 16 17 sylan Could not format ( ( ph /\ x e. _om ) -> ( A +o x ) = ( A +no x ) ) : No typesetting found for |- ( ( ph /\ x e. _om ) -> ( A +o x ) = ( A +no x ) ) with typecode |-
19 1 2 3 4 5 6 naddwordnexlem0 φAω𝑜sucCω𝑜sucCB
20 19 simprd φω𝑜sucCB
21 20 adantr φxωω𝑜sucCB
22 11 7 jctil φωOnω𝑜COn
23 22 adantr φxωωOnω𝑜COn
24 nnacl MωxωM+𝑜xω
25 5 24 sylan φxωM+𝑜xω
26 oaordi ωOnω𝑜COnM+𝑜xωω𝑜C+𝑜M+𝑜xω𝑜C+𝑜ω
27 23 25 26 sylc φxωω𝑜C+𝑜M+𝑜xω𝑜C+𝑜ω
28 1 adantr φxωA=ω𝑜C+𝑜M
29 28 oveq1d φxωA+𝑜x=ω𝑜C+𝑜M+𝑜x
30 nnon xωxOn
31 oaass ω𝑜COnMOnxOnω𝑜C+𝑜M+𝑜x=ω𝑜C+𝑜M+𝑜x
32 11 13 30 31 syl2an3an φxωω𝑜C+𝑜M+𝑜x=ω𝑜C+𝑜M+𝑜x
33 29 32 eqtrd φxωA+𝑜x=ω𝑜C+𝑜M+𝑜x
34 9 adantr φxωCOn
35 omsuc ωOnCOnω𝑜sucC=ω𝑜C+𝑜ω
36 7 34 35 sylancr φxωω𝑜sucC=ω𝑜C+𝑜ω
37 27 33 36 3eltr4d φxωA+𝑜xω𝑜sucC
38 21 37 sseldd φxωA+𝑜xB
39 18 38 eqeltrrd Could not format ( ( ph /\ x e. _om ) -> ( A +no x ) e. B ) : No typesetting found for |- ( ( ph /\ x e. _om ) -> ( A +no x ) e. B ) with typecode |-
40 39 ex Could not format ( ph -> ( x e. _om -> ( A +no x ) e. B ) ) : No typesetting found for |- ( ph -> ( x e. _om -> ( A +no x ) e. B ) ) with typecode |-
41 40 ralrimiv Could not format ( ph -> A. x e. _om ( A +no x ) e. B ) : No typesetting found for |- ( ph -> A. x e. _om ( A +no x ) e. B ) with typecode |-