| Step |
Hyp |
Ref |
Expression |
| 1 |
|
toponuni |
|
| 2 |
1
|
adantr |
|
| 3 |
|
topontop |
|
| 4 |
3
|
adantr |
|
| 5 |
|
simpr |
|
| 6 |
5 2
|
sseqtrd |
|
| 7 |
|
eqid |
|
| 8 |
7
|
neiuni |
|
| 9 |
4 6 8
|
syl2anc |
|
| 10 |
2 9
|
eqtrd |
|
| 11 |
|
eqimss2 |
|
| 12 |
10 11
|
syl |
|
| 13 |
|
sspwuni |
|
| 14 |
12 13
|
sylibr |
|
| 15 |
14
|
3adant3 |
|
| 16 |
|
0nnei |
|
| 17 |
3 16
|
sylan |
|
| 18 |
17
|
3adant2 |
|
| 19 |
7
|
tpnei |
|
| 20 |
19
|
biimpa |
|
| 21 |
4 6 20
|
syl2anc |
|
| 22 |
2 21
|
eqeltrd |
|
| 23 |
22
|
3adant3 |
|
| 24 |
15 18 23
|
3jca |
|
| 25 |
|
elpwi |
|
| 26 |
4
|
ad2antrr |
|
| 27 |
|
simprl |
|
| 28 |
|
simprr |
|
| 29 |
|
simplr |
|
| 30 |
2
|
ad2antrr |
|
| 31 |
29 30
|
sseqtrd |
|
| 32 |
7
|
ssnei2 |
|
| 33 |
26 27 28 31 32
|
syl22anc |
|
| 34 |
33
|
rexlimdvaa |
|
| 35 |
25 34
|
sylan2 |
|
| 36 |
35
|
ralrimiva |
|
| 37 |
36
|
3adant3 |
|
| 38 |
|
innei |
|
| 39 |
38
|
3expib |
|
| 40 |
3 39
|
syl |
|
| 41 |
40
|
3ad2ant1 |
|
| 42 |
41
|
ralrimivv |
|
| 43 |
|
isfil2 |
|
| 44 |
24 37 42 43
|
syl3anbrc |
|