Metamath Proof Explorer


Theorem nmfnleub

Description: An upper bound for the norm of a functional. (Contributed by NM, 24-May-2006) (Revised by Mario Carneiro, 7-Sep-2014) (New usage is discouraged.)

Ref Expression
Assertion nmfnleub T:A*normfnTAxnormx1TxA

Proof

Step Hyp Ref Expression
1 nmfnval T:normfnT=supy|xnormx1y=Tx*<
2 1 adantr T:A*normfnT=supy|xnormx1y=Tx*<
3 2 breq1d T:A*normfnTAsupy|xnormx1y=Tx*<A
4 nmfnsetre T:y|xnormx1y=Tx
5 ressxr *
6 4 5 sstrdi T:y|xnormx1y=Tx*
7 supxrleub y|xnormx1y=Tx*A*supy|xnormx1y=Tx*<Azy|xnormx1y=TxzA
8 6 7 sylan T:A*supy|xnormx1y=Tx*<Azy|xnormx1y=TxzA
9 ancom normx1y=Txy=Txnormx1
10 eqeq1 y=zy=Txz=Tx
11 10 anbi1d y=zy=Txnormx1z=Txnormx1
12 9 11 bitrid y=znormx1y=Txz=Txnormx1
13 12 rexbidv y=zxnormx1y=Txxz=Txnormx1
14 13 ralab zy|xnormx1y=TxzAzxz=Txnormx1zA
15 ralcom4 xzz=Txnormx1zAzxz=Txnormx1zA
16 impexp z=Txnormx1zAz=Txnormx1zA
17 16 albii zz=Txnormx1zAzz=Txnormx1zA
18 fvex TxV
19 breq1 z=TxzATxA
20 19 imbi2d z=Txnormx1zAnormx1TxA
21 18 20 ceqsalv zz=Txnormx1zAnormx1TxA
22 17 21 bitri zz=Txnormx1zAnormx1TxA
23 22 ralbii xzz=Txnormx1zAxnormx1TxA
24 r19.23v xz=Txnormx1zAxz=Txnormx1zA
25 24 albii zxz=Txnormx1zAzxz=Txnormx1zA
26 15 23 25 3bitr3i xnormx1TxAzxz=Txnormx1zA
27 14 26 bitr4i zy|xnormx1y=TxzAxnormx1TxA
28 8 27 bitrdi T:A*supy|xnormx1y=Tx*<Axnormx1TxA
29 3 28 bitrd T:A*normfnTAxnormx1TxA