Metamath Proof Explorer


Theorem nmobndseqi

Description: A bounded sequence determines a bounded operator. (Contributed by NM, 18-Jan-2008) (Revised by Mario Carneiro, 7-Apr-2013) (New usage is discouraged.)

Ref Expression
Hypotheses nmoubi.1 X=BaseSetU
nmoubi.y Y=BaseSetW
nmoubi.l L=normCVU
nmoubi.m M=normCVW
nmoubi.3 N=UnormOpOLDW
nmoubi.u UNrmCVec
nmoubi.w WNrmCVec
Assertion nmobndseqi T:XYff:XkLfk1kMTfkkNT

Proof

Step Hyp Ref Expression
1 nmoubi.1 X=BaseSetU
2 nmoubi.y Y=BaseSetW
3 nmoubi.l L=normCVU
4 nmoubi.m M=normCVW
5 nmoubi.3 N=UnormOpOLDW
6 nmoubi.u UNrmCVec
7 nmoubi.w WNrmCVec
8 impexp f:XkLfk1kMTfkkf:XkLfk1kMTfkk
9 r19.35 kLfk1MTfkkkLfk1kMTfkk
10 9 imbi2i f:XkLfk1MTfkkf:XkLfk1kMTfkk
11 8 10 bitr4i f:XkLfk1kMTfkkf:XkLfk1MTfkk
12 11 albii ff:XkLfk1kMTfkkff:XkLfk1MTfkk
13 1 fvexi XV
14 nnenom ω
15 fveq2 y=fkLy=Lfk
16 15 breq1d y=fkLy1Lfk1
17 2fveq3 y=fkMTy=MTfk
18 17 breq1d y=fkMTykMTfkk
19 16 18 imbi12d y=fkLy1MTykLfk1MTfkk
20 19 notbid y=fk¬Ly1MTyk¬Lfk1MTfkk
21 13 14 20 axcc4 kyX¬Ly1MTykff:Xk¬Lfk1MTfkk
22 21 con3i ¬ff:Xk¬Lfk1MTfkk¬kyX¬Ly1MTyk
23 dfrex2 kLfk1MTfkk¬k¬Lfk1MTfkk
24 23 imbi2i f:XkLfk1MTfkkf:X¬k¬Lfk1MTfkk
25 24 albii ff:XkLfk1MTfkkff:X¬k¬Lfk1MTfkk
26 alinexa ff:X¬k¬Lfk1MTfkk¬ff:Xk¬Lfk1MTfkk
27 25 26 bitri ff:XkLfk1MTfkk¬ff:Xk¬Lfk1MTfkk
28 dfral2 yXLy1MTyk¬yX¬Ly1MTyk
29 28 rexbii kyXLy1MTykk¬yX¬Ly1MTyk
30 rexnal k¬yX¬Ly1MTyk¬kyX¬Ly1MTyk
31 29 30 bitri kyXLy1MTyk¬kyX¬Ly1MTyk
32 22 27 31 3imtr4i ff:XkLfk1MTfkkkyXLy1MTyk
33 nnre kk
34 33 anim1i kyXLy1MTykkyXLy1MTyk
35 34 reximi2 kyXLy1MTykkyXLy1MTyk
36 32 35 syl ff:XkLfk1MTfkkkyXLy1MTyk
37 12 36 sylbi ff:XkLfk1kMTfkkkyXLy1MTyk
38 1 2 3 4 5 6 7 nmobndi T:XYNTkyXLy1MTyk
39 37 38 imbitrrid T:XYff:XkLfk1kMTfkkNT
40 39 imp T:XYff:XkLfk1kMTfkkNT