| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmoco.1 |
|
| 2 |
|
nmoco.2 |
|
| 3 |
|
nmoco.3 |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
|
nghmrcl1 |
|
| 9 |
8
|
adantl |
|
| 10 |
|
nghmrcl2 |
|
| 11 |
10
|
adantr |
|
| 12 |
|
nghmghm |
|
| 13 |
|
nghmghm |
|
| 14 |
|
ghmco |
|
| 15 |
12 13 14
|
syl2an |
|
| 16 |
2
|
nghmcl |
|
| 17 |
3
|
nghmcl |
|
| 18 |
|
remulcl |
|
| 19 |
16 17 18
|
syl2an |
|
| 20 |
|
nghmrcl1 |
|
| 21 |
2
|
nmoge0 |
|
| 22 |
20 10 12 21
|
syl3anc |
|
| 23 |
16 22
|
jca |
|
| 24 |
|
nghmrcl2 |
|
| 25 |
3
|
nmoge0 |
|
| 26 |
8 24 13 25
|
syl3anc |
|
| 27 |
17 26
|
jca |
|
| 28 |
|
mulge0 |
|
| 29 |
23 27 28
|
syl2an |
|
| 30 |
10
|
ad2antrr |
|
| 31 |
12
|
ad2antrr |
|
| 32 |
|
eqid |
|
| 33 |
|
eqid |
|
| 34 |
32 33
|
ghmf |
|
| 35 |
31 34
|
syl |
|
| 36 |
13
|
ad2antlr |
|
| 37 |
4 32
|
ghmf |
|
| 38 |
36 37
|
syl |
|
| 39 |
|
simprl |
|
| 40 |
38 39
|
ffvelcdmd |
|
| 41 |
35 40
|
ffvelcdmd |
|
| 42 |
33 6
|
nmcl |
|
| 43 |
30 41 42
|
syl2anc |
|
| 44 |
16
|
ad2antrr |
|
| 45 |
20
|
ad2antrr |
|
| 46 |
|
eqid |
|
| 47 |
32 46
|
nmcl |
|
| 48 |
45 40 47
|
syl2anc |
|
| 49 |
44 48
|
remulcld |
|
| 50 |
17
|
ad2antlr |
|
| 51 |
4 5
|
nmcl |
|
| 52 |
8 51
|
sylan |
|
| 53 |
52
|
ad2ant2lr |
|
| 54 |
50 53
|
remulcld |
|
| 55 |
44 54
|
remulcld |
|
| 56 |
|
simpll |
|
| 57 |
2 32 46 6
|
nmoi |
|
| 58 |
56 40 57
|
syl2anc |
|
| 59 |
23
|
ad2antrr |
|
| 60 |
3 4 5 46
|
nmoi |
|
| 61 |
60
|
ad2ant2lr |
|
| 62 |
|
lemul2a |
|
| 63 |
48 54 59 61 62
|
syl31anc |
|
| 64 |
43 49 55 58 63
|
letrd |
|
| 65 |
|
fvco3 |
|
| 66 |
38 39 65
|
syl2anc |
|
| 67 |
66
|
fveq2d |
|
| 68 |
44
|
recnd |
|
| 69 |
50
|
recnd |
|
| 70 |
53
|
recnd |
|
| 71 |
68 69 70
|
mulassd |
|
| 72 |
64 67 71
|
3brtr4d |
|
| 73 |
1 4 5 6 7 9 11 15 19 29 72
|
nmolb2d |
|