Metamath Proof Explorer


Theorem nn0min

Description: Extracting the minimum positive integer for which a property ch does not hold. This uses substitutions similar to nn0ind . (Contributed by Thierry Arnoux, 6-May-2018)

Ref Expression
Hypotheses nn0min.0 n = 0 ψ χ
nn0min.1 n = m ψ θ
nn0min.2 n = m + 1 ψ τ
nn0min.3 φ ¬ χ
nn0min.4 φ n ψ
Assertion nn0min φ m 0 ¬ θ τ

Proof

Step Hyp Ref Expression
1 nn0min.0 n = 0 ψ χ
2 nn0min.1 n = m ψ θ
3 nn0min.2 n = m + 1 ψ τ
4 nn0min.3 φ ¬ χ
5 nn0min.4 φ n ψ
6 5 adantr φ m 0 ¬ θ ¬ τ n ψ
7 nfv m φ
8 nfra1 m m 0 ¬ θ ¬ τ
9 7 8 nfan m φ m 0 ¬ θ ¬ τ
10 nfv m ¬ k n ψ
11 9 10 nfim m φ m 0 ¬ θ ¬ τ ¬ k n ψ
12 dfsbcq2 k = 1 k n ψ [˙ 1 / n]˙ ψ
13 12 notbid k = 1 ¬ k n ψ ¬ [˙ 1 / n]˙ ψ
14 13 imbi2d k = 1 φ m 0 ¬ θ ¬ τ ¬ k n ψ φ m 0 ¬ θ ¬ τ ¬ [˙ 1 / n]˙ ψ
15 nfv n θ
16 15 2 sbhypf k = m k n ψ θ
17 16 notbid k = m ¬ k n ψ ¬ θ
18 17 imbi2d k = m φ m 0 ¬ θ ¬ τ ¬ k n ψ φ m 0 ¬ θ ¬ τ ¬ θ
19 nfv n τ
20 19 3 sbhypf k = m + 1 k n ψ τ
21 20 notbid k = m + 1 ¬ k n ψ ¬ τ
22 21 imbi2d k = m + 1 φ m 0 ¬ θ ¬ τ ¬ k n ψ φ m 0 ¬ θ ¬ τ ¬ τ
23 sbequ12r k = n k n ψ ψ
24 23 notbid k = n ¬ k n ψ ¬ ψ
25 24 imbi2d k = n φ m 0 ¬ θ ¬ τ ¬ k n ψ φ m 0 ¬ θ ¬ τ ¬ ψ
26 0nn0 0 0
27 15 2 sbiev m n ψ θ
28 nfv n χ
29 28 1 sbhypf m = 0 m n ψ χ
30 27 29 bitr3id m = 0 θ χ
31 30 notbid m = 0 ¬ θ ¬ χ
32 oveq1 m = 0 m + 1 = 0 + 1
33 0p1e1 0 + 1 = 1
34 32 33 eqtrdi m = 0 m + 1 = 1
35 1nn 1
36 eleq1 m + 1 = 1 m + 1 1
37 35 36 mpbiri m + 1 = 1 m + 1
38 3 sbcieg m + 1 [˙m + 1 / n]˙ ψ τ
39 34 37 38 3syl m = 0 [˙m + 1 / n]˙ ψ τ
40 34 sbceq1d m = 0 [˙m + 1 / n]˙ ψ [˙ 1 / n]˙ ψ
41 39 40 bitr3d m = 0 τ [˙ 1 / n]˙ ψ
42 41 notbid m = 0 ¬ τ ¬ [˙ 1 / n]˙ ψ
43 31 42 imbi12d m = 0 ¬ θ ¬ τ ¬ χ ¬ [˙ 1 / n]˙ ψ
44 43 rspcv 0 0 m 0 ¬ θ ¬ τ ¬ χ ¬ [˙ 1 / n]˙ ψ
45 26 44 ax-mp m 0 ¬ θ ¬ τ ¬ χ ¬ [˙ 1 / n]˙ ψ
46 4 45 mpan9 φ m 0 ¬ θ ¬ τ ¬ [˙ 1 / n]˙ ψ
47 cbvralsvw m 0 ¬ θ ¬ τ k 0 k m ¬ θ ¬ τ
48 nnnn0 m m 0
49 sbequ12r k = m k m ¬ θ ¬ τ ¬ θ ¬ τ
50 49 rspcv m 0 k 0 k m ¬ θ ¬ τ ¬ θ ¬ τ
51 48 50 syl m k 0 k m ¬ θ ¬ τ ¬ θ ¬ τ
52 47 51 syl5bi m m 0 ¬ θ ¬ τ ¬ θ ¬ τ
53 52 adantld m φ m 0 ¬ θ ¬ τ ¬ θ ¬ τ
54 53 a2d m φ m 0 ¬ θ ¬ τ ¬ θ φ m 0 ¬ θ ¬ τ ¬ τ
55 11 14 18 22 25 46 54 nnindf n φ m 0 ¬ θ ¬ τ ¬ ψ
56 55 rgen n φ m 0 ¬ θ ¬ τ ¬ ψ
57 r19.21v n φ m 0 ¬ θ ¬ τ ¬ ψ φ m 0 ¬ θ ¬ τ n ¬ ψ
58 56 57 mpbi φ m 0 ¬ θ ¬ τ n ¬ ψ
59 ralnex n ¬ ψ ¬ n ψ
60 58 59 sylib φ m 0 ¬ θ ¬ τ ¬ n ψ
61 6 60 pm2.65da φ ¬ m 0 ¬ θ ¬ τ
62 imnan ¬ θ ¬ τ ¬ ¬ θ τ
63 62 ralbii m 0 ¬ θ ¬ τ m 0 ¬ ¬ θ τ
64 61 63 sylnib φ ¬ m 0 ¬ ¬ θ τ
65 dfrex2 m 0 ¬ θ τ ¬ m 0 ¬ ¬ θ τ
66 64 65 sylibr φ m 0 ¬ θ τ