Metamath Proof Explorer


Theorem nn0min

Description: Extracting the minimum positive integer for which a property ch does not hold. This uses substitutions similar to nn0ind . (Contributed by Thierry Arnoux, 6-May-2018)

Ref Expression
Hypotheses nn0min.0 n=0ψχ
nn0min.1 n=mψθ
nn0min.2 n=m+1ψτ
nn0min.3 φ¬χ
nn0min.4 φnψ
Assertion nn0min φm0¬θτ

Proof

Step Hyp Ref Expression
1 nn0min.0 n=0ψχ
2 nn0min.1 n=mψθ
3 nn0min.2 n=m+1ψτ
4 nn0min.3 φ¬χ
5 nn0min.4 φnψ
6 5 adantr φm0¬θ¬τnψ
7 nfv mφ
8 nfra1 mm0¬θ¬τ
9 7 8 nfan mφm0¬θ¬τ
10 nfv m¬knψ
11 9 10 nfim mφm0¬θ¬τ¬knψ
12 dfsbcq2 k=1knψ[˙1/n]˙ψ
13 12 notbid k=1¬knψ¬[˙1/n]˙ψ
14 13 imbi2d k=1φm0¬θ¬τ¬knψφm0¬θ¬τ¬[˙1/n]˙ψ
15 nfv nθ
16 15 2 sbhypf k=mknψθ
17 16 notbid k=m¬knψ¬θ
18 17 imbi2d k=mφm0¬θ¬τ¬knψφm0¬θ¬τ¬θ
19 nfv nτ
20 19 3 sbhypf k=m+1knψτ
21 20 notbid k=m+1¬knψ¬τ
22 21 imbi2d k=m+1φm0¬θ¬τ¬knψφm0¬θ¬τ¬τ
23 sbequ12r k=nknψψ
24 23 notbid k=n¬knψ¬ψ
25 24 imbi2d k=nφm0¬θ¬τ¬knψφm0¬θ¬τ¬ψ
26 0nn0 00
27 15 2 sbiev mnψθ
28 nfv nχ
29 28 1 sbhypf m=0mnψχ
30 27 29 bitr3id m=0θχ
31 30 notbid m=0¬θ¬χ
32 oveq1 m=0m+1=0+1
33 0p1e1 0+1=1
34 32 33 eqtrdi m=0m+1=1
35 1nn 1
36 eleq1 m+1=1m+11
37 35 36 mpbiri m+1=1m+1
38 3 sbcieg m+1[˙m+1/n]˙ψτ
39 34 37 38 3syl m=0[˙m+1/n]˙ψτ
40 34 sbceq1d m=0[˙m+1/n]˙ψ[˙1/n]˙ψ
41 39 40 bitr3d m=0τ[˙1/n]˙ψ
42 41 notbid m=0¬τ¬[˙1/n]˙ψ
43 31 42 imbi12d m=0¬θ¬τ¬χ¬[˙1/n]˙ψ
44 43 rspcv 00m0¬θ¬τ¬χ¬[˙1/n]˙ψ
45 26 44 ax-mp m0¬θ¬τ¬χ¬[˙1/n]˙ψ
46 4 45 mpan9 φm0¬θ¬τ¬[˙1/n]˙ψ
47 cbvralsvw m0¬θ¬τk0km¬θ¬τ
48 nnnn0 mm0
49 sbequ12r k=mkm¬θ¬τ¬θ¬τ
50 49 rspcv m0k0km¬θ¬τ¬θ¬τ
51 48 50 syl mk0km¬θ¬τ¬θ¬τ
52 47 51 biimtrid mm0¬θ¬τ¬θ¬τ
53 52 adantld mφm0¬θ¬τ¬θ¬τ
54 53 a2d mφm0¬θ¬τ¬θφm0¬θ¬τ¬τ
55 11 14 18 22 25 46 54 nnindf nφm0¬θ¬τ¬ψ
56 55 rgen nφm0¬θ¬τ¬ψ
57 r19.21v nφm0¬θ¬τ¬ψφm0¬θ¬τn¬ψ
58 56 57 mpbi φm0¬θ¬τn¬ψ
59 ralnex n¬ψ¬nψ
60 58 59 sylib φm0¬θ¬τ¬nψ
61 6 60 pm2.65da φ¬m0¬θ¬τ
62 imnan ¬θ¬τ¬¬θτ
63 62 ralbii m0¬θ¬τm0¬¬θτ
64 61 63 sylnib φ¬m0¬¬θτ
65 dfrex2 m0¬θτ¬m0¬¬θτ
66 64 65 sylibr φm0¬θτ