| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eq0 |  | 
						
							| 2 |  | breq2 |  | 
						
							| 3 | 2 | elrab |  | 
						
							| 4 | 3 | notbii |  | 
						
							| 5 |  | imnan |  | 
						
							| 6 | 4 5 | sylbb2 |  | 
						
							| 7 | 6 | alimi |  | 
						
							| 8 |  | df-ral |  | 
						
							| 9 | 7 8 | sylibr |  | 
						
							| 10 |  | ssel2 |  | 
						
							| 11 | 10 | nnred |  | 
						
							| 12 | 11 | adantlr |  | 
						
							| 13 |  | nnre |  | 
						
							| 14 | 13 | ad2antlr |  | 
						
							| 15 |  | lenlt |  | 
						
							| 16 | 15 | biimprd |  | 
						
							| 17 | 12 14 16 | syl2anc |  | 
						
							| 18 | 17 | ralimdva |  | 
						
							| 19 |  | fzfi |  | 
						
							| 20 | 10 | nnnn0d |  | 
						
							| 21 | 20 | adantlr |  | 
						
							| 22 | 21 | adantr |  | 
						
							| 23 |  | nnnn0 |  | 
						
							| 24 | 23 | ad3antlr |  | 
						
							| 25 |  | simpr |  | 
						
							| 26 | 22 24 25 | 3jca |  | 
						
							| 27 | 26 | ex |  | 
						
							| 28 |  | elfz2nn0 |  | 
						
							| 29 | 27 28 | imbitrrdi |  | 
						
							| 30 | 29 | ralimdva |  | 
						
							| 31 | 30 | imp |  | 
						
							| 32 |  | dfss3 |  | 
						
							| 33 | 31 32 | sylibr |  | 
						
							| 34 |  | ssfi |  | 
						
							| 35 | 19 33 34 | sylancr |  | 
						
							| 36 | 35 | ex |  | 
						
							| 37 | 18 36 | syld |  | 
						
							| 38 | 9 37 | syl5 |  | 
						
							| 39 | 1 38 | biimtrid |  | 
						
							| 40 | 39 | necon3bd |  | 
						
							| 41 | 40 | imp |  | 
						
							| 42 | 41 | an32s |  | 
						
							| 43 | 42 | 3impa |  |