Description: An infinite set of positive integers is unbounded above. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 28-Feb-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | nninfnub | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eq0 | |
|
2 | breq2 | |
|
3 | 2 | elrab | |
4 | 3 | notbii | |
5 | imnan | |
|
6 | 4 5 | sylbb2 | |
7 | 6 | alimi | |
8 | df-ral | |
|
9 | 7 8 | sylibr | |
10 | ssel2 | |
|
11 | 10 | nnred | |
12 | 11 | adantlr | |
13 | nnre | |
|
14 | 13 | ad2antlr | |
15 | lenlt | |
|
16 | 15 | biimprd | |
17 | 12 14 16 | syl2anc | |
18 | 17 | ralimdva | |
19 | fzfi | |
|
20 | 10 | nnnn0d | |
21 | 20 | adantlr | |
22 | 21 | adantr | |
23 | nnnn0 | |
|
24 | 23 | ad3antlr | |
25 | simpr | |
|
26 | 22 24 25 | 3jca | |
27 | 26 | ex | |
28 | elfz2nn0 | |
|
29 | 27 28 | imbitrrdi | |
30 | 29 | ralimdva | |
31 | 30 | imp | |
32 | dfss3 | |
|
33 | 31 32 | sylibr | |
34 | ssfi | |
|
35 | 19 33 34 | sylancr | |
36 | 35 | ex | |
37 | 18 36 | syld | |
38 | 9 37 | syl5 | |
39 | 1 38 | biimtrid | |
40 | 39 | necon3bd | |
41 | 40 | imp | |
42 | 41 | an32s | |
43 | 42 | 3impa | |