Metamath Proof Explorer


Theorem nninfnub

Description: An infinite set of positive integers is unbounded above. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 28-Feb-2014)

Ref Expression
Assertion nninfnub A¬AFinBxA|B<x

Proof

Step Hyp Ref Expression
1 eq0 xA|B<x=y¬yxA|B<x
2 breq2 x=yB<xB<y
3 2 elrab yxA|B<xyAB<y
4 3 notbii ¬yxA|B<x¬yAB<y
5 imnan yA¬B<y¬yAB<y
6 4 5 sylbb2 ¬yxA|B<xyA¬B<y
7 6 alimi y¬yxA|B<xyyA¬B<y
8 df-ral yA¬B<yyyA¬B<y
9 7 8 sylibr y¬yxA|B<xyA¬B<y
10 ssel2 AyAy
11 10 nnred AyAy
12 11 adantlr AByAy
13 nnre BB
14 13 ad2antlr AByAB
15 lenlt yByB¬B<y
16 15 biimprd yB¬B<yyB
17 12 14 16 syl2anc AByA¬B<yyB
18 17 ralimdva AByA¬B<yyAyB
19 fzfi 0BFin
20 10 nnnn0d AyAy0
21 20 adantlr AByAy0
22 21 adantr AByAyBy0
23 nnnn0 BB0
24 23 ad3antlr AByAyBB0
25 simpr AByAyByB
26 22 24 25 3jca AByAyBy0B0yB
27 26 ex AByAyBy0B0yB
28 elfz2nn0 y0By0B0yB
29 27 28 imbitrrdi AByAyBy0B
30 29 ralimdva AByAyByAy0B
31 30 imp AByAyByAy0B
32 dfss3 A0ByAy0B
33 31 32 sylibr AByAyBA0B
34 ssfi 0BFinA0BAFin
35 19 33 34 sylancr AByAyBAFin
36 35 ex AByAyBAFin
37 18 36 syld AByA¬B<yAFin
38 9 37 syl5 ABy¬yxA|B<xAFin
39 1 38 biimtrid ABxA|B<x=AFin
40 39 necon3bd AB¬AFinxA|B<x
41 40 imp AB¬AFinxA|B<x
42 41 an32s A¬AFinBxA|B<x
43 42 3impa A¬AFinBxA|B<x