Metamath Proof Explorer


Theorem nnsum3primesprm

Description: Every prime is "the sum of at most 3" (actually one - the prime itself) primes. (Contributed by AV, 2-Aug-2020) (Proof shortened by AV, 17-Apr-2021)

Ref Expression
Assertion nnsum3primesprm Pdf1dd3P=k=1dfk

Proof

Step Hyp Ref Expression
1 1nn 1
2 1zzd P1
3 id PP
4 2 3 fsnd P1P:1
5 prmex V
6 snex 1V
7 5 6 elmap 1P11P:1
8 4 7 sylibr P1P1
9 1re 1
10 simpl Pk1P
11 fvsng 1P1P1=P
12 9 10 11 sylancr Pk11P1=P
13 12 sumeq2dv Pk11P1=k1P
14 prmz PP
15 14 zcnd PP
16 eqidd k=1P=P
17 16 sumsn 1Pk1P=P
18 9 15 17 sylancr Pk1P=P
19 13 18 eqtr2d PP=k11P1
20 1le3 13
21 19 20 jctil P13P=k11P1
22 simpl f=1Pk1f=1P
23 elsni k1k=1
24 23 adantl f=1Pk1k=1
25 22 24 fveq12d f=1Pk1fk=1P1
26 25 sumeq2dv f=1Pk1fk=k11P1
27 26 eqeq2d f=1PP=k1fkP=k11P1
28 27 anbi2d f=1P13P=k1fk13P=k11P1
29 28 rspcev 1P113P=k11P1f113P=k1fk
30 8 21 29 syl2anc Pf113P=k1fk
31 oveq2 d=11d=11
32 1z 1
33 fzsn 111=1
34 32 33 ax-mp 11=1
35 31 34 eqtrdi d=11d=1
36 35 oveq2d d=11d=1
37 breq1 d=1d313
38 35 sumeq1d d=1k=1dfk=k1fk
39 38 eqeq2d d=1P=k=1dfkP=k1fk
40 37 39 anbi12d d=1d3P=k=1dfk13P=k1fk
41 36 40 rexeqbidv d=1f1dd3P=k=1dfkf113P=k1fk
42 41 rspcev 1f113P=k1fkdf1dd3P=k=1dfk
43 1 30 42 sylancr Pdf1dd3P=k=1dfk