Description: Every prime is "the sum of at most 3" (actually one - the prime itself) primes. (Contributed by AV, 2-Aug-2020) (Proof shortened by AV, 17-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | nnsum3primesprm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn | |
|
2 | 1zzd | |
|
3 | id | |
|
4 | 2 3 | fsnd | |
5 | prmex | |
|
6 | snex | |
|
7 | 5 6 | elmap | |
8 | 4 7 | sylibr | |
9 | 1re | |
|
10 | simpl | |
|
11 | fvsng | |
|
12 | 9 10 11 | sylancr | |
13 | 12 | sumeq2dv | |
14 | prmz | |
|
15 | 14 | zcnd | |
16 | eqidd | |
|
17 | 16 | sumsn | |
18 | 9 15 17 | sylancr | |
19 | 13 18 | eqtr2d | |
20 | 1le3 | |
|
21 | 19 20 | jctil | |
22 | simpl | |
|
23 | elsni | |
|
24 | 23 | adantl | |
25 | 22 24 | fveq12d | |
26 | 25 | sumeq2dv | |
27 | 26 | eqeq2d | |
28 | 27 | anbi2d | |
29 | 28 | rspcev | |
30 | 8 21 29 | syl2anc | |
31 | oveq2 | |
|
32 | 1z | |
|
33 | fzsn | |
|
34 | 32 33 | ax-mp | |
35 | 31 34 | eqtrdi | |
36 | 35 | oveq2d | |
37 | breq1 | |
|
38 | 35 | sumeq1d | |
39 | 38 | eqeq2d | |
40 | 37 39 | anbi12d | |
41 | 36 40 | rexeqbidv | |
42 | 41 | rspcev | |
43 | 1 30 42 | sylancr | |