Metamath Proof Explorer


Theorem noseponlem

Description: Lemma for nosepon . Consider a case of proper subset domain. (Contributed by Scott Fenton, 21-Sep-2020)

Ref Expression
Assertion noseponlem A No B No dom A dom B ¬ x On A x = B x

Proof

Step Hyp Ref Expression
1 nodmon A No dom A On
2 1 3ad2ant1 A No B No dom A dom B dom A On
3 nodmord A No Ord dom A
4 ordirr Ord dom A ¬ dom A dom A
5 3 4 syl A No ¬ dom A dom A
6 5 3ad2ant1 A No B No dom A dom B ¬ dom A dom A
7 ndmfv ¬ dom A dom A A dom A =
8 6 7 syl A No B No dom A dom B A dom A =
9 nosgnn0 ¬ 1 𝑜 2 𝑜
10 elno3 B No B : dom B 1 𝑜 2 𝑜 dom B On
11 10 simplbi B No B : dom B 1 𝑜 2 𝑜
12 11 3ad2ant2 A No B No dom A dom B B : dom B 1 𝑜 2 𝑜
13 simp3 A No B No dom A dom B dom A dom B
14 12 13 ffvelrnd A No B No dom A dom B B dom A 1 𝑜 2 𝑜
15 eleq1 B dom A = B dom A 1 𝑜 2 𝑜 1 𝑜 2 𝑜
16 14 15 syl5ibcom A No B No dom A dom B B dom A = 1 𝑜 2 𝑜
17 9 16 mtoi A No B No dom A dom B ¬ B dom A =
18 17 neqned A No B No dom A dom B B dom A
19 18 necomd A No B No dom A dom B B dom A
20 8 19 eqnetrd A No B No dom A dom B A dom A B dom A
21 fveq2 x = dom A A x = A dom A
22 fveq2 x = dom A B x = B dom A
23 21 22 neeq12d x = dom A A x B x A dom A B dom A
24 23 rspcev dom A On A dom A B dom A x On A x B x
25 2 20 24 syl2anc A No B No dom A dom B x On A x B x
26 df-ne A x B x ¬ A x = B x
27 26 rexbii x On A x B x x On ¬ A x = B x
28 rexnal x On ¬ A x = B x ¬ x On A x = B x
29 27 28 bitri x On A x B x ¬ x On A x = B x
30 25 29 sylib A No B No dom A dom B ¬ x On A x = B x