Metamath Proof Explorer


Theorem npomex

Description: A simplifying observation, and an indication of why any attempt to develop a theory of the real numbers without the Axiom of Infinity is doomed to failure: since every member of P. is an infinite set, the negation of Infinity implies that P. , and hence RR , is empty. (Note that this proof, which used the fact that Dedekind cuts have no maximum, could just as well have used that they have no minimum, since they are downward-closed by prcdnq and nsmallnq ). (Contributed by Mario Carneiro, 11-May-2013) (Revised by Mario Carneiro, 16-Nov-2014) (New usage is discouraged.)

Ref Expression
Assertion npomex A𝑷ωV

Proof

Step Hyp Ref Expression
1 elex A𝑷AV
2 prnmax A𝑷xAyAx<𝑸y
3 2 ralrimiva A𝑷xAyAx<𝑸y
4 prpssnq A𝑷A𝑸
5 4 pssssd A𝑷A𝑸
6 ltsonq <𝑸Or𝑸
7 soss A𝑸<𝑸Or𝑸<𝑸OrA
8 5 6 7 mpisyl A𝑷<𝑸OrA
9 8 adantr A𝑷AFin<𝑸OrA
10 simpr A𝑷AFinAFin
11 prn0 A𝑷A
12 11 adantr A𝑷AFinA
13 fimax2g <𝑸OrAAFinAxAyA¬x<𝑸y
14 9 10 12 13 syl3anc A𝑷AFinxAyA¬x<𝑸y
15 ralnex yA¬x<𝑸y¬yAx<𝑸y
16 15 rexbii xAyA¬x<𝑸yxA¬yAx<𝑸y
17 rexnal xA¬yAx<𝑸y¬xAyAx<𝑸y
18 16 17 bitri xAyA¬x<𝑸y¬xAyAx<𝑸y
19 14 18 sylib A𝑷AFin¬xAyAx<𝑸y
20 19 ex A𝑷AFin¬xAyAx<𝑸y
21 3 20 mt2d A𝑷¬AFin
22 nelne1 AV¬AFinVFin
23 1 21 22 syl2anc A𝑷VFin
24 23 necomd A𝑷FinV
25 fineqv ¬ωVFin=V
26 25 necon1abii FinVωV
27 24 26 sylib A𝑷ωV