Description: In a normal space, disjoint closed sets are separated by open sets. (Contributed by Jeff Hankins, 1-Feb-2010)
Ref | Expression | ||
---|---|---|---|
Assertion | nrmsep | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nrmtop | |
|
2 | 1 | ad2antrr | |
3 | elssuni | |
|
4 | 3 | ad2antrl | |
5 | eqid | |
|
6 | 5 | clscld | |
7 | 2 4 6 | syl2anc | |
8 | 5 | cldopn | |
9 | 7 8 | syl | |
10 | simprrl | |
|
11 | incom | |
|
12 | simprrr | |
|
13 | 11 12 | eqtrid | |
14 | simplr2 | |
|
15 | 5 | cldss | |
16 | reldisj | |
|
17 | 14 15 16 | 3syl | |
18 | 13 17 | mpbid | |
19 | 5 | sscls | |
20 | 2 4 19 | syl2anc | |
21 | 20 | ssrind | |
22 | disjdif | |
|
23 | sseq0 | |
|
24 | 21 22 23 | sylancl | |
25 | sseq2 | |
|
26 | ineq2 | |
|
27 | 26 | eqeq1d | |
28 | 25 27 | 3anbi23d | |
29 | 28 | rspcev | |
30 | 9 10 18 24 29 | syl13anc | |
31 | nrmsep2 | |
|
32 | 30 31 | reximddv | |