Metamath Proof Explorer


Theorem nrmsep

Description: In a normal space, disjoint closed sets are separated by open sets. (Contributed by Jeff Hankins, 1-Feb-2010)

Ref Expression
Assertion nrmsep J Nrm C Clsd J D Clsd J C D = x J y J C x D y x y =

Proof

Step Hyp Ref Expression
1 nrmtop J Nrm J Top
2 1 ad2antrr J Nrm C Clsd J D Clsd J C D = x J C x cls J x D = J Top
3 elssuni x J x J
4 3 ad2antrl J Nrm C Clsd J D Clsd J C D = x J C x cls J x D = x J
5 eqid J = J
6 5 clscld J Top x J cls J x Clsd J
7 2 4 6 syl2anc J Nrm C Clsd J D Clsd J C D = x J C x cls J x D = cls J x Clsd J
8 5 cldopn cls J x Clsd J J cls J x J
9 7 8 syl J Nrm C Clsd J D Clsd J C D = x J C x cls J x D = J cls J x J
10 simprrl J Nrm C Clsd J D Clsd J C D = x J C x cls J x D = C x
11 incom D cls J x = cls J x D
12 simprrr J Nrm C Clsd J D Clsd J C D = x J C x cls J x D = cls J x D =
13 11 12 syl5eq J Nrm C Clsd J D Clsd J C D = x J C x cls J x D = D cls J x =
14 simplr2 J Nrm C Clsd J D Clsd J C D = x J C x cls J x D = D Clsd J
15 5 cldss D Clsd J D J
16 reldisj D J D cls J x = D J cls J x
17 14 15 16 3syl J Nrm C Clsd J D Clsd J C D = x J C x cls J x D = D cls J x = D J cls J x
18 13 17 mpbid J Nrm C Clsd J D Clsd J C D = x J C x cls J x D = D J cls J x
19 5 sscls J Top x J x cls J x
20 2 4 19 syl2anc J Nrm C Clsd J D Clsd J C D = x J C x cls J x D = x cls J x
21 20 ssrind J Nrm C Clsd J D Clsd J C D = x J C x cls J x D = x J cls J x cls J x J cls J x
22 disjdif cls J x J cls J x =
23 sseq0 x J cls J x cls J x J cls J x cls J x J cls J x = x J cls J x =
24 21 22 23 sylancl J Nrm C Clsd J D Clsd J C D = x J C x cls J x D = x J cls J x =
25 sseq2 y = J cls J x D y D J cls J x
26 ineq2 y = J cls J x x y = x J cls J x
27 26 eqeq1d y = J cls J x x y = x J cls J x =
28 25 27 3anbi23d y = J cls J x C x D y x y = C x D J cls J x x J cls J x =
29 28 rspcev J cls J x J C x D J cls J x x J cls J x = y J C x D y x y =
30 9 10 18 24 29 syl13anc J Nrm C Clsd J D Clsd J C D = x J C x cls J x D = y J C x D y x y =
31 nrmsep2 J Nrm C Clsd J D Clsd J C D = x J C x cls J x D =
32 30 31 reximddv J Nrm C Clsd J D Clsd J C D = x J y J C x D y x y =