Metamath Proof Explorer


Theorem nrmsep

Description: In a normal space, disjoint closed sets are separated by open sets. (Contributed by Jeff Hankins, 1-Feb-2010)

Ref Expression
Assertion nrmsep JNrmCClsdJDClsdJCD=xJyJCxDyxy=

Proof

Step Hyp Ref Expression
1 nrmtop JNrmJTop
2 1 ad2antrr JNrmCClsdJDClsdJCD=xJCxclsJxD=JTop
3 elssuni xJxJ
4 3 ad2antrl JNrmCClsdJDClsdJCD=xJCxclsJxD=xJ
5 eqid J=J
6 5 clscld JTopxJclsJxClsdJ
7 2 4 6 syl2anc JNrmCClsdJDClsdJCD=xJCxclsJxD=clsJxClsdJ
8 5 cldopn clsJxClsdJJclsJxJ
9 7 8 syl JNrmCClsdJDClsdJCD=xJCxclsJxD=JclsJxJ
10 simprrl JNrmCClsdJDClsdJCD=xJCxclsJxD=Cx
11 incom DclsJx=clsJxD
12 simprrr JNrmCClsdJDClsdJCD=xJCxclsJxD=clsJxD=
13 11 12 eqtrid JNrmCClsdJDClsdJCD=xJCxclsJxD=DclsJx=
14 simplr2 JNrmCClsdJDClsdJCD=xJCxclsJxD=DClsdJ
15 5 cldss DClsdJDJ
16 reldisj DJDclsJx=DJclsJx
17 14 15 16 3syl JNrmCClsdJDClsdJCD=xJCxclsJxD=DclsJx=DJclsJx
18 13 17 mpbid JNrmCClsdJDClsdJCD=xJCxclsJxD=DJclsJx
19 5 sscls JTopxJxclsJx
20 2 4 19 syl2anc JNrmCClsdJDClsdJCD=xJCxclsJxD=xclsJx
21 20 ssrind JNrmCClsdJDClsdJCD=xJCxclsJxD=xJclsJxclsJxJclsJx
22 disjdif clsJxJclsJx=
23 sseq0 xJclsJxclsJxJclsJxclsJxJclsJx=xJclsJx=
24 21 22 23 sylancl JNrmCClsdJDClsdJCD=xJCxclsJxD=xJclsJx=
25 sseq2 y=JclsJxDyDJclsJx
26 ineq2 y=JclsJxxy=xJclsJx
27 26 eqeq1d y=JclsJxxy=xJclsJx=
28 25 27 3anbi23d y=JclsJxCxDyxy=CxDJclsJxxJclsJx=
29 28 rspcev JclsJxJCxDJclsJxxJclsJx=yJCxDyxy=
30 9 10 18 24 29 syl13anc JNrmCClsdJDClsdJCD=xJCxclsJxD=yJCxDyxy=
31 nrmsep2 JNrmCClsdJDClsdJCD=xJCxclsJxD=
32 30 31 reximddv JNrmCClsdJDClsdJCD=xJyJCxDyxy=