Metamath Proof Explorer


Theorem ntrneicls11

Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, F , then conditions equal to claiming that the interior of the empty set is the empty set hold equally. (Contributed by RP, 2-Jun-2021)

Ref Expression
Hypotheses ntrnei.o O=iV,jVk𝒫jiljmi|lkm
ntrnei.f F=𝒫BOB
ntrnei.r φIFN
Assertion ntrneicls11 φI=xB¬Nx

Proof

Step Hyp Ref Expression
1 ntrnei.o O=iV,jVk𝒫jiljmi|lkm
2 ntrnei.f F=𝒫BOB
3 ntrnei.r φIFN
4 1 2 3 ntrneiiex φI𝒫B𝒫B
5 elmapi I𝒫B𝒫BI:𝒫B𝒫B
6 4 5 syl φI:𝒫B𝒫B
7 0elpw 𝒫B
8 7 a1i φ𝒫B
9 6 8 ffvelcdmd φI𝒫B
10 9 elpwid φIB
11 reldisj IBIB=IBB
12 10 11 syl φIB=IBB
13 12 bicomd φIBBIB=
14 difid BB=
15 14 sseq2i IBBI
16 ss0b II=
17 15 16 bitri IBBI=
18 disjr IB=xB¬xI
19 13 17 18 3bitr3g φI=xB¬xI
20 3 adantr φxBIFN
21 simpr φxBxB
22 7 a1i φxB𝒫B
23 1 2 20 21 22 ntrneiel φxBxINx
24 23 notbid φxB¬xI¬Nx
25 24 ralbidva φxB¬xIxB¬Nx
26 19 25 bitrd φI=xB¬Nx