Metamath Proof Explorer


Theorem ntrneik3

Description: The intersection of interiors of any pair is a subset of the interior of the intersection if and only if the intersection of any two neighborhoods of a point is also a neighborhood. (Contributed by RP, 19-Jun-2021)

Ref Expression
Hypotheses ntrnei.o O=iV,jVk𝒫jiljmi|lkm
ntrnei.f F=𝒫BOB
ntrnei.r φIFN
Assertion ntrneik3 φs𝒫Bt𝒫BIsItIstxBs𝒫Bt𝒫BsNxtNxstNx

Proof

Step Hyp Ref Expression
1 ntrnei.o O=iV,jVk𝒫jiljmi|lkm
2 ntrnei.f F=𝒫BOB
3 ntrnei.r φIFN
4 dfss3 IsItIstxIsItxIst
5 1 2 3 ntrneiiex φI𝒫B𝒫B
6 elmapi I𝒫B𝒫BI:𝒫B𝒫B
7 5 6 syl φI:𝒫B𝒫B
8 7 ffvelcdmda φs𝒫BIs𝒫B
9 8 elpwid φs𝒫BIsB
10 ssinss1 IsBIsItB
11 9 10 syl φs𝒫BIsItB
12 11 adantr φs𝒫Bt𝒫BIsItB
13 ralss IsItBxIsItxIstxBxIsItxIst
14 12 13 syl φs𝒫Bt𝒫BxIsItxIstxBxIsItxIst
15 elin xIsItxIsxIt
16 3 ad3antrrr φs𝒫Bt𝒫BxBIFN
17 simpr φs𝒫Bt𝒫BxBxB
18 simpllr φs𝒫Bt𝒫BxBs𝒫B
19 1 2 16 17 18 ntrneiel φs𝒫Bt𝒫BxBxIssNx
20 simplr φs𝒫Bt𝒫BxBt𝒫B
21 1 2 16 17 20 ntrneiel φs𝒫Bt𝒫BxBxIttNx
22 19 21 anbi12d φs𝒫Bt𝒫BxBxIsxItsNxtNx
23 15 22 bitrid φs𝒫Bt𝒫BxBxIsItsNxtNx
24 1 2 3 ntrneibex φBV
25 24 ad3antrrr φs𝒫Bt𝒫BxBBV
26 18 elpwid φs𝒫Bt𝒫BxBsB
27 ssinss1 sBstB
28 26 27 syl φs𝒫Bt𝒫BxBstB
29 25 28 sselpwd φs𝒫Bt𝒫BxBst𝒫B
30 1 2 16 17 29 ntrneiel φs𝒫Bt𝒫BxBxIststNx
31 23 30 imbi12d φs𝒫Bt𝒫BxBxIsItxIstsNxtNxstNx
32 31 ralbidva φs𝒫Bt𝒫BxBxIsItxIstxBsNxtNxstNx
33 14 32 bitrd φs𝒫Bt𝒫BxIsItxIstxBsNxtNxstNx
34 4 33 bitrid φs𝒫Bt𝒫BIsItIstxBsNxtNxstNx
35 34 ralbidva φs𝒫Bt𝒫BIsItIstt𝒫BxBsNxtNxstNx
36 ralcom t𝒫BxBsNxtNxstNxxBt𝒫BsNxtNxstNx
37 35 36 bitrdi φs𝒫Bt𝒫BIsItIstxBt𝒫BsNxtNxstNx
38 37 ralbidva φs𝒫Bt𝒫BIsItIsts𝒫BxBt𝒫BsNxtNxstNx
39 ralcom s𝒫BxBt𝒫BsNxtNxstNxxBs𝒫Bt𝒫BsNxtNxstNx
40 38 39 bitrdi φs𝒫Bt𝒫BIsItIstxBs𝒫Bt𝒫BsNxtNxstNx