Description: The only multiples of A that are equal to the identity are the multiples of the order of A . (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Mario Carneiro, 23-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | odcl.1 | |
|
odcl.2 | |
||
odid.3 | |
||
odid.4 | |
||
Assertion | oddvds | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odcl.1 | |
|
2 | odcl.2 | |
|
3 | odid.3 | |
|
4 | odid.4 | |
|
5 | simpr | |
|
6 | simpl3 | |
|
7 | dvdsval3 | |
|
8 | 5 6 7 | syl2anc | |
9 | simpl2 | |
|
10 | 1 4 3 | mulg0 | |
11 | 9 10 | syl | |
12 | oveq1 | |
|
13 | 12 | eqeq1d | |
14 | 11 13 | syl5ibrcom | |
15 | 6 | zred | |
16 | 5 | nnrpd | |
17 | modlt | |
|
18 | 15 16 17 | syl2anc | |
19 | 6 5 | zmodcld | |
20 | 19 | nn0red | |
21 | 5 | nnred | |
22 | 20 21 | ltnled | |
23 | 18 22 | mpbid | |
24 | 1 2 3 4 | odlem2 | |
25 | elfzle2 | |
|
26 | 24 25 | syl | |
27 | 26 | 3com23 | |
28 | 27 | 3expia | |
29 | 28 | con3d | |
30 | 29 | impancom | |
31 | 9 23 30 | syl2anc | |
32 | elnn0 | |
|
33 | 19 32 | sylib | |
34 | 33 | ord | |
35 | 31 34 | syld | |
36 | 14 35 | impbid | |
37 | 1 2 3 4 | odmod | |
38 | 37 | eqeq1d | |
39 | 8 36 38 | 3bitrd | |
40 | simpr | |
|
41 | 40 | breq1d | |
42 | simpl3 | |
|
43 | 0dvds | |
|
44 | 42 43 | syl | |
45 | simpl2 | |
|
46 | 45 10 | syl | |
47 | oveq1 | |
|
48 | 47 | eqeq1d | |
49 | 46 48 | syl5ibrcom | |
50 | 1 2 3 4 | odnncl | |
51 | 50 | nnne0d | |
52 | 51 | expr | |
53 | 52 | impancom | |
54 | 53 | necon4d | |
55 | 54 | impancom | |
56 | 49 55 | impbid | |
57 | 41 44 56 | 3bitrd | |
58 | 1 2 | odcl | |
59 | 58 | 3ad2ant2 | |
60 | elnn0 | |
|
61 | 59 60 | sylib | |
62 | 39 57 61 | mpjaodan | |