Metamath Proof Explorer


Theorem oddvdsnn0

Description: The only multiples of A that are equal to the identity are the multiples of the order of A . (Contributed by Mario Carneiro, 23-Sep-2015)

Ref Expression
Hypotheses odcl.1 X=BaseG
odcl.2 O=odG
odid.3 ·˙=G
odid.4 0˙=0G
Assertion oddvdsnn0 GMndAXN0OANN·˙A=0˙

Proof

Step Hyp Ref Expression
1 odcl.1 X=BaseG
2 odcl.2 O=odG
3 odid.3 ·˙=G
4 odid.4 0˙=0G
5 0nn0 00
6 1 2 3 4 mndodcong GMndAXN000OAOAN0N·˙A=0·˙A
7 6 3expia GMndAXN000OAOAN0N·˙A=0·˙A
8 5 7 mpanr2 GMndAXN0OAOAN0N·˙A=0·˙A
9 8 3impa GMndAXN0OAOAN0N·˙A=0·˙A
10 nn0cn N0N
11 10 3ad2ant3 GMndAXN0N
12 11 subid1d GMndAXN0N0=N
13 12 breq2d GMndAXN0OAN0OAN
14 1 4 3 mulg0 AX0·˙A=0˙
15 14 3ad2ant2 GMndAXN00·˙A=0˙
16 15 eqeq2d GMndAXN0N·˙A=0·˙AN·˙A=0˙
17 13 16 bibi12d GMndAXN0OAN0N·˙A=0·˙AOANN·˙A=0˙
18 9 17 sylibd GMndAXN0OAOANN·˙A=0˙
19 simpr GMndAXN0OA=0OA=0
20 19 breq1d GMndAXN0OA=0OAN0N
21 simpl3 GMndAXN0OA=0N0
22 nn0z N0N
23 0dvds N0NN=0
24 21 22 23 3syl GMndAXN0OA=00NN=0
25 15 adantr GMndAXN0OA=00·˙A=0˙
26 oveq1 N=0N·˙A=0·˙A
27 26 eqeq1d N=0N·˙A=0˙0·˙A=0˙
28 25 27 syl5ibrcom GMndAXN0OA=0N=0N·˙A=0˙
29 1 2 3 4 odlem2 AXNN·˙A=0˙OA1N
30 29 3com23 AXN·˙A=0˙NOA1N
31 elfznn OA1NOA
32 nnne0 OAOA0
33 30 31 32 3syl AXN·˙A=0˙NOA0
34 33 3expia AXN·˙A=0˙NOA0
35 34 3ad2antl2 GMndAXN0N·˙A=0˙NOA0
36 35 necon2bd GMndAXN0N·˙A=0˙OA=0¬N
37 simpl3 GMndAXN0N·˙A=0˙N0
38 elnn0 N0NN=0
39 37 38 sylib GMndAXN0N·˙A=0˙NN=0
40 39 ord GMndAXN0N·˙A=0˙¬NN=0
41 36 40 syld GMndAXN0N·˙A=0˙OA=0N=0
42 41 impancom GMndAXN0OA=0N·˙A=0˙N=0
43 28 42 impbid GMndAXN0OA=0N=0N·˙A=0˙
44 20 24 43 3bitrd GMndAXN0OA=0OANN·˙A=0˙
45 44 ex GMndAXN0OA=0OANN·˙A=0˙
46 1 2 odcl AXOA0
47 46 3ad2ant2 GMndAXN0OA0
48 elnn0 OA0OAOA=0
49 47 48 sylib GMndAXN0OAOA=0
50 18 45 49 mpjaod GMndAXN0OANN·˙A=0˙