| Step |
Hyp |
Ref |
Expression |
| 1 |
|
odcl.1 |
|
| 2 |
|
odcl.2 |
|
| 3 |
|
odid.3 |
|
| 4 |
|
odid.4 |
|
| 5 |
|
0nn0 |
|
| 6 |
1 2 3 4
|
mndodcong |
|
| 7 |
6
|
3expia |
|
| 8 |
5 7
|
mpanr2 |
|
| 9 |
8
|
3impa |
|
| 10 |
|
nn0cn |
|
| 11 |
10
|
3ad2ant3 |
|
| 12 |
11
|
subid1d |
|
| 13 |
12
|
breq2d |
|
| 14 |
1 4 3
|
mulg0 |
|
| 15 |
14
|
3ad2ant2 |
|
| 16 |
15
|
eqeq2d |
|
| 17 |
13 16
|
bibi12d |
|
| 18 |
9 17
|
sylibd |
|
| 19 |
|
simpr |
|
| 20 |
19
|
breq1d |
|
| 21 |
|
simpl3 |
|
| 22 |
|
nn0z |
|
| 23 |
|
0dvds |
|
| 24 |
21 22 23
|
3syl |
|
| 25 |
15
|
adantr |
|
| 26 |
|
oveq1 |
|
| 27 |
26
|
eqeq1d |
|
| 28 |
25 27
|
syl5ibrcom |
|
| 29 |
1 2 3 4
|
odlem2 |
|
| 30 |
29
|
3com23 |
|
| 31 |
|
elfznn |
|
| 32 |
|
nnne0 |
|
| 33 |
30 31 32
|
3syl |
|
| 34 |
33
|
3expia |
|
| 35 |
34
|
3ad2antl2 |
|
| 36 |
35
|
necon2bd |
|
| 37 |
|
simpl3 |
|
| 38 |
|
elnn0 |
|
| 39 |
37 38
|
sylib |
|
| 40 |
39
|
ord |
|
| 41 |
36 40
|
syld |
|
| 42 |
41
|
impancom |
|
| 43 |
28 42
|
impbid |
|
| 44 |
20 24 43
|
3bitrd |
|
| 45 |
44
|
ex |
|
| 46 |
1 2
|
odcl |
|
| 47 |
46
|
3ad2ant2 |
|
| 48 |
|
elnn0 |
|
| 49 |
47 48
|
sylib |
|
| 50 |
18 45 49
|
mpjaod |
|