Description: The only multiples of A that are equal to the identity are the multiples of the order of A . (Contributed by Mario Carneiro, 23-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | odcl.1 | |
|
odcl.2 | |
||
odid.3 | |
||
odid.4 | |
||
Assertion | oddvdsnn0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odcl.1 | |
|
2 | odcl.2 | |
|
3 | odid.3 | |
|
4 | odid.4 | |
|
5 | 0nn0 | |
|
6 | 1 2 3 4 | mndodcong | |
7 | 6 | 3expia | |
8 | 5 7 | mpanr2 | |
9 | 8 | 3impa | |
10 | nn0cn | |
|
11 | 10 | 3ad2ant3 | |
12 | 11 | subid1d | |
13 | 12 | breq2d | |
14 | 1 4 3 | mulg0 | |
15 | 14 | 3ad2ant2 | |
16 | 15 | eqeq2d | |
17 | 13 16 | bibi12d | |
18 | 9 17 | sylibd | |
19 | simpr | |
|
20 | 19 | breq1d | |
21 | simpl3 | |
|
22 | nn0z | |
|
23 | 0dvds | |
|
24 | 21 22 23 | 3syl | |
25 | 15 | adantr | |
26 | oveq1 | |
|
27 | 26 | eqeq1d | |
28 | 25 27 | syl5ibrcom | |
29 | 1 2 3 4 | odlem2 | |
30 | 29 | 3com23 | |
31 | elfznn | |
|
32 | nnne0 | |
|
33 | 30 31 32 | 3syl | |
34 | 33 | 3expia | |
35 | 34 | 3ad2antl2 | |
36 | 35 | necon2bd | |
37 | simpl3 | |
|
38 | elnn0 | |
|
39 | 37 38 | sylib | |
40 | 39 | ord | |
41 | 36 40 | syld | |
42 | 41 | impancom | |
43 | 28 42 | impbid | |
44 | 20 24 43 | 3bitrd | |
45 | 44 | ex | |
46 | 1 2 | odcl | |
47 | 46 | 3ad2ant2 | |
48 | elnn0 | |
|
49 | 47 48 | sylib | |
50 | 18 45 49 | mpjaod | |