Metamath Proof Explorer


Theorem oelimcl

Description: The ordinal exponential with a limit ordinal is a limit ordinal. (Contributed by Mario Carneiro, 29-May-2015)

Ref Expression
Assertion oelimcl AOn2𝑜BCLimBLimA𝑜B

Proof

Step Hyp Ref Expression
1 eldifi AOn2𝑜AOn
2 limelon BCLimBBOn
3 oecl AOnBOnA𝑜BOn
4 1 2 3 syl2an AOn2𝑜BCLimBA𝑜BOn
5 eloni A𝑜BOnOrdA𝑜B
6 4 5 syl AOn2𝑜BCLimBOrdA𝑜B
7 1 adantr AOn2𝑜BCLimBAOn
8 2 adantl AOn2𝑜BCLimBBOn
9 dif20el AOn2𝑜A
10 9 adantr AOn2𝑜BCLimBA
11 oen0 AOnBOnAA𝑜B
12 7 8 10 11 syl21anc AOn2𝑜BCLimBA𝑜B
13 oelim2 AOnBCLimBA𝑜B=yB1𝑜A𝑜y
14 1 13 sylan AOn2𝑜BCLimBA𝑜B=yB1𝑜A𝑜y
15 14 eleq2d AOn2𝑜BCLimBxA𝑜BxyB1𝑜A𝑜y
16 eliun xyB1𝑜A𝑜yyB1𝑜xA𝑜y
17 eldifi yB1𝑜yB
18 7 adantr AOn2𝑜BCLimByBxA𝑜yAOn
19 8 adantr AOn2𝑜BCLimByBxA𝑜yBOn
20 simprl AOn2𝑜BCLimByBxA𝑜yyB
21 onelon BOnyByOn
22 19 20 21 syl2anc AOn2𝑜BCLimByBxA𝑜yyOn
23 oecl AOnyOnA𝑜yOn
24 18 22 23 syl2anc AOn2𝑜BCLimByBxA𝑜yA𝑜yOn
25 eloni A𝑜yOnOrdA𝑜y
26 24 25 syl AOn2𝑜BCLimByBxA𝑜yOrdA𝑜y
27 simprr AOn2𝑜BCLimByBxA𝑜yxA𝑜y
28 ordsucss OrdA𝑜yxA𝑜ysucxA𝑜y
29 26 27 28 sylc AOn2𝑜BCLimByBxA𝑜ysucxA𝑜y
30 simpll AOn2𝑜BCLimByBxA𝑜yAOn2𝑜
31 oeordi BOnAOn2𝑜yBA𝑜yA𝑜B
32 19 30 31 syl2anc AOn2𝑜BCLimByBxA𝑜yyBA𝑜yA𝑜B
33 20 32 mpd AOn2𝑜BCLimByBxA𝑜yA𝑜yA𝑜B
34 onelon A𝑜yOnxA𝑜yxOn
35 24 27 34 syl2anc AOn2𝑜BCLimByBxA𝑜yxOn
36 onsuc xOnsucxOn
37 35 36 syl AOn2𝑜BCLimByBxA𝑜ysucxOn
38 4 adantr AOn2𝑜BCLimByBxA𝑜yA𝑜BOn
39 ontr2 sucxOnA𝑜BOnsucxA𝑜yA𝑜yA𝑜BsucxA𝑜B
40 37 38 39 syl2anc AOn2𝑜BCLimByBxA𝑜ysucxA𝑜yA𝑜yA𝑜BsucxA𝑜B
41 29 33 40 mp2and AOn2𝑜BCLimByBxA𝑜ysucxA𝑜B
42 41 expr AOn2𝑜BCLimByBxA𝑜ysucxA𝑜B
43 17 42 sylan2 AOn2𝑜BCLimByB1𝑜xA𝑜ysucxA𝑜B
44 43 rexlimdva AOn2𝑜BCLimByB1𝑜xA𝑜ysucxA𝑜B
45 16 44 biimtrid AOn2𝑜BCLimBxyB1𝑜A𝑜ysucxA𝑜B
46 15 45 sylbid AOn2𝑜BCLimBxA𝑜BsucxA𝑜B
47 46 ralrimiv AOn2𝑜BCLimBxA𝑜BsucxA𝑜B
48 dflim4 LimA𝑜BOrdA𝑜BA𝑜BxA𝑜BsucxA𝑜B
49 6 12 47 48 syl3anbrc AOn2𝑜BCLimBLimA𝑜B