Description: The ordinal exponential with a limit ordinal is a limit ordinal. (Contributed by Mario Carneiro, 29-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | oelimcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi | |
|
2 | limelon | |
|
3 | oecl | |
|
4 | 1 2 3 | syl2an | |
5 | eloni | |
|
6 | 4 5 | syl | |
7 | 1 | adantr | |
8 | 2 | adantl | |
9 | dif20el | |
|
10 | 9 | adantr | |
11 | oen0 | |
|
12 | 7 8 10 11 | syl21anc | |
13 | oelim2 | |
|
14 | 1 13 | sylan | |
15 | 14 | eleq2d | |
16 | eliun | |
|
17 | eldifi | |
|
18 | 7 | adantr | |
19 | 8 | adantr | |
20 | simprl | |
|
21 | onelon | |
|
22 | 19 20 21 | syl2anc | |
23 | oecl | |
|
24 | 18 22 23 | syl2anc | |
25 | eloni | |
|
26 | 24 25 | syl | |
27 | simprr | |
|
28 | ordsucss | |
|
29 | 26 27 28 | sylc | |
30 | simpll | |
|
31 | oeordi | |
|
32 | 19 30 31 | syl2anc | |
33 | 20 32 | mpd | |
34 | onelon | |
|
35 | 24 27 34 | syl2anc | |
36 | onsuc | |
|
37 | 35 36 | syl | |
38 | 4 | adantr | |
39 | ontr2 | |
|
40 | 37 38 39 | syl2anc | |
41 | 29 33 40 | mp2and | |
42 | 41 | expr | |
43 | 17 42 | sylan2 | |
44 | 43 | rexlimdva | |
45 | 16 44 | biimtrid | |
46 | 15 45 | sylbid | |
47 | 46 | ralrimiv | |
48 | dflim4 | |
|
49 | 6 12 47 48 | syl3anbrc | |