Description: Addition operator for functions from sets into power of omega results in a function from the intersection of sets to that power of omega. (Contributed by RP, 5-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | ofoaf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr | |
|
2 | omelon | |
|
3 | simpl | |
|
4 | oecl | |
|
5 | 2 3 4 | sylancr | |
6 | 1 5 | eqeltrd | |
7 | 3 2 | jctil | |
8 | peano1 | |
|
9 | oen0 | |
|
10 | 7 8 9 | sylancl | |
11 | 10 1 | eleqtrrd | |
12 | oveq1 | |
|
13 | 12 | sseq2d | |
14 | 13 | adantl | |
15 | oa0r | |
|
16 | 6 15 | syl | |
17 | ssid | |
|
18 | 16 17 | eqsstrrdi | |
19 | 11 14 18 | rspcedvd | |
20 | ssiun | |
|
21 | 19 20 | syl | |
22 | 1 | eleq2d | |
23 | 22 | biimpa | |
24 | 6 | adantr | |
25 | 1 | adantr | |
26 | ssid | |
|
27 | 25 26 | eqsstrrdi | |
28 | oaabs2 | |
|
29 | 23 24 27 28 | syl21anc | |
30 | 29 26 | eqsstrdi | |
31 | 30 | iunssd | |
32 | 21 31 | eqssd | |
33 | 6 6 32 | 3jca | |
34 | ofoafg | |
|
35 | 33 34 | sylan2 | |