Metamath Proof Explorer


Theorem ofoaf

Description: Addition operator for functions from sets into power of omega results in a function from the intersection of sets to that power of omega. (Contributed by RP, 5-Jan-2025)

Ref Expression
Assertion ofoaf AVBWC=ABDOnE=ω𝑜Df+𝑜EA×EB:EA×EBEC

Proof

Step Hyp Ref Expression
1 simpr DOnE=ω𝑜DE=ω𝑜D
2 omelon ωOn
3 simpl DOnE=ω𝑜DDOn
4 oecl ωOnDOnω𝑜DOn
5 2 3 4 sylancr DOnE=ω𝑜Dω𝑜DOn
6 1 5 eqeltrd DOnE=ω𝑜DEOn
7 3 2 jctil DOnE=ω𝑜DωOnDOn
8 peano1 ω
9 oen0 ωOnDOnωω𝑜D
10 7 8 9 sylancl DOnE=ω𝑜Dω𝑜D
11 10 1 eleqtrrd DOnE=ω𝑜DE
12 oveq1 x=x+𝑜E=+𝑜E
13 12 sseq2d x=Ex+𝑜EE+𝑜E
14 13 adantl DOnE=ω𝑜Dx=Ex+𝑜EE+𝑜E
15 oa0r EOn+𝑜E=E
16 6 15 syl DOnE=ω𝑜D+𝑜E=E
17 ssid +𝑜E+𝑜E
18 16 17 eqsstrrdi DOnE=ω𝑜DE+𝑜E
19 11 14 18 rspcedvd DOnE=ω𝑜DxEEx+𝑜E
20 ssiun xEEx+𝑜EExEx+𝑜E
21 19 20 syl DOnE=ω𝑜DExEx+𝑜E
22 1 eleq2d DOnE=ω𝑜DxExω𝑜D
23 22 biimpa DOnE=ω𝑜DxExω𝑜D
24 6 adantr DOnE=ω𝑜DxEEOn
25 1 adantr DOnE=ω𝑜DxEE=ω𝑜D
26 ssid EE
27 25 26 eqsstrrdi DOnE=ω𝑜DxEω𝑜DE
28 oaabs2 xω𝑜DEOnω𝑜DEx+𝑜E=E
29 23 24 27 28 syl21anc DOnE=ω𝑜DxEx+𝑜E=E
30 29 26 eqsstrdi DOnE=ω𝑜DxEx+𝑜EE
31 30 iunssd DOnE=ω𝑜DxEx+𝑜EE
32 21 31 eqssd DOnE=ω𝑜DE=xEx+𝑜E
33 6 6 32 3jca DOnE=ω𝑜DEOnEOnE=xEx+𝑜E
34 ofoafg AVBWC=ABEOnEOnE=xEx+𝑜Ef+𝑜EA×EB:EA×EBEC
35 33 34 sylan2 AVBWC=ABDOnE=ω𝑜Df+𝑜EA×EB:EA×EBEC