Metamath Proof Explorer


Theorem ogrpinvlt

Description: In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 3-Sep-2018)

Ref Expression
Hypotheses ogrpinvlt.0 B=BaseG
ogrpinvlt.1 <˙=<G
ogrpinvlt.2 I=invgG
Assertion ogrpinvlt GoGrpopp𝑔GoGrpXBYBX<˙YIY<˙IX

Proof

Step Hyp Ref Expression
1 ogrpinvlt.0 B=BaseG
2 ogrpinvlt.1 <˙=<G
3 ogrpinvlt.2 I=invgG
4 simp1l GoGrpopp𝑔GoGrpXBYBGoGrp
5 simp2 GoGrpopp𝑔GoGrpXBYBXB
6 simp3 GoGrpopp𝑔GoGrpXBYBYB
7 ogrpgrp GoGrpGGrp
8 4 7 syl GoGrpopp𝑔GoGrpXBYBGGrp
9 1 3 grpinvcl GGrpYBIYB
10 8 6 9 syl2anc GoGrpopp𝑔GoGrpXBYBIYB
11 eqid +G=+G
12 1 2 11 ogrpaddltbi GoGrpXBYBIYBX<˙YX+GIY<˙Y+GIY
13 4 5 6 10 12 syl13anc GoGrpopp𝑔GoGrpXBYBX<˙YX+GIY<˙Y+GIY
14 eqid 0G=0G
15 1 11 14 3 grprinv GGrpYBY+GIY=0G
16 8 6 15 syl2anc GoGrpopp𝑔GoGrpXBYBY+GIY=0G
17 16 breq2d GoGrpopp𝑔GoGrpXBYBX+GIY<˙Y+GIYX+GIY<˙0G
18 simp1r GoGrpopp𝑔GoGrpXBYBopp𝑔GoGrp
19 1 11 grpcl GGrpXBIYBX+GIYB
20 8 5 10 19 syl3anc GoGrpopp𝑔GoGrpXBYBX+GIYB
21 1 14 grpidcl GGrp0GB
22 4 7 21 3syl GoGrpopp𝑔GoGrpXBYB0GB
23 1 3 grpinvcl GGrpXBIXB
24 8 5 23 syl2anc GoGrpopp𝑔GoGrpXBYBIXB
25 1 2 11 4 18 20 22 24 ogrpaddltrbid GoGrpopp𝑔GoGrpXBYBX+GIY<˙0GIX+GX+GIY<˙IX+G0G
26 13 17 25 3bitrd GoGrpopp𝑔GoGrpXBYBX<˙YIX+GX+GIY<˙IX+G0G
27 1 11 14 3 grplinv GGrpXBIX+GX=0G
28 8 5 27 syl2anc GoGrpopp𝑔GoGrpXBYBIX+GX=0G
29 28 oveq1d GoGrpopp𝑔GoGrpXBYBIX+GX+GIY=0G+GIY
30 1 11 grpass GGrpIXBXBIYBIX+GX+GIY=IX+GX+GIY
31 8 24 5 10 30 syl13anc GoGrpopp𝑔GoGrpXBYBIX+GX+GIY=IX+GX+GIY
32 1 11 14 grplid GGrpIYB0G+GIY=IY
33 8 10 32 syl2anc GoGrpopp𝑔GoGrpXBYB0G+GIY=IY
34 29 31 33 3eqtr3d GoGrpopp𝑔GoGrpXBYBIX+GX+GIY=IY
35 1 11 14 grprid GGrpIXBIX+G0G=IX
36 8 24 35 syl2anc GoGrpopp𝑔GoGrpXBYBIX+G0G=IX
37 34 36 breq12d GoGrpopp𝑔GoGrpXBYBIX+GX+GIY<˙IX+G0GIY<˙IX
38 26 37 bitrd GoGrpopp𝑔GoGrpXBYBX<˙YIY<˙IX