Description: In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 3-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ogrpinvlt.0 | |
|
ogrpinvlt.1 | |
||
ogrpinvlt.2 | |
||
Assertion | ogrpinvlt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ogrpinvlt.0 | |
|
2 | ogrpinvlt.1 | |
|
3 | ogrpinvlt.2 | |
|
4 | simp1l | |
|
5 | simp2 | |
|
6 | simp3 | |
|
7 | ogrpgrp | |
|
8 | 4 7 | syl | |
9 | 1 3 | grpinvcl | |
10 | 8 6 9 | syl2anc | |
11 | eqid | |
|
12 | 1 2 11 | ogrpaddltbi | |
13 | 4 5 6 10 12 | syl13anc | |
14 | eqid | |
|
15 | 1 11 14 3 | grprinv | |
16 | 8 6 15 | syl2anc | |
17 | 16 | breq2d | |
18 | simp1r | |
|
19 | 1 11 | grpcl | |
20 | 8 5 10 19 | syl3anc | |
21 | 1 14 | grpidcl | |
22 | 4 7 21 | 3syl | |
23 | 1 3 | grpinvcl | |
24 | 8 5 23 | syl2anc | |
25 | 1 2 11 4 18 20 22 24 | ogrpaddltrbid | |
26 | 13 17 25 | 3bitrd | |
27 | 1 11 14 3 | grplinv | |
28 | 8 5 27 | syl2anc | |
29 | 28 | oveq1d | |
30 | 1 11 | grpass | |
31 | 8 24 5 10 30 | syl13anc | |
32 | 1 11 14 | grplid | |
33 | 8 10 32 | syl2anc | |
34 | 29 31 33 | 3eqtr3d | |
35 | 1 11 14 | grprid | |
36 | 8 24 35 | syl2anc | |
37 | 34 36 | breq12d | |
38 | 26 37 | bitrd | |