Metamath Proof Explorer


Theorem omsf

Description: A constructed outer measure is a function. (Contributed by Thierry Arnoux, 17-Sep-2019) (Revised by AV, 4-Oct-2020)

Ref Expression
Assertion omsf QVR:Q0+∞toOMeasR:𝒫domR0+∞

Proof

Step Hyp Ref Expression
1 iccssxr 0+∞*
2 xrltso <Or*
3 soss 0+∞*<Or*<Or0+∞
4 1 2 3 mp2 <Or0+∞
5 4 a1i QVR:Q0+∞a𝒫domR<Or0+∞
6 omscl QVR:Q0+∞a𝒫domRranxz𝒫domR|azzω*yxRy0+∞
7 6 3expa QVR:Q0+∞a𝒫domRranxz𝒫domR|azzω*yxRy0+∞
8 xrge0infss ranxz𝒫domR|azzω*yxRy0+∞t0+∞wranxz𝒫domR|azzω*yxRy¬w<tw0+∞t<wsranxz𝒫domR|azzω*yxRys<w
9 7 8 syl QVR:Q0+∞a𝒫domRt0+∞wranxz𝒫domR|azzω*yxRy¬w<tw0+∞t<wsranxz𝒫domR|azzω*yxRys<w
10 5 9 infcl QVR:Q0+∞a𝒫domRsupranxz𝒫domR|azzω*yxRy0+∞<0+∞
11 fex R:Q0+∞QVRV
12 11 ancoms QVR:Q0+∞RV
13 omsval RVtoOMeasR=a𝒫domRsupranxz𝒫domR|azzω*yxRy0+∞<
14 12 13 syl QVR:Q0+∞toOMeasR=a𝒫domRsupranxz𝒫domR|azzω*yxRy0+∞<
15 simpll QVR:Q0+∞a𝒫domRQV
16 simplr QVR:Q0+∞a𝒫domRR:Q0+∞
17 simpr QVR:Q0+∞a𝒫domRa𝒫domR
18 fdm R:Q0+∞domR=Q
19 18 unieqd R:Q0+∞domR=Q
20 19 pweqd R:Q0+∞𝒫domR=𝒫Q
21 20 ad2antlr QVR:Q0+∞a𝒫domR𝒫domR=𝒫Q
22 17 21 eleqtrd QVR:Q0+∞a𝒫domRa𝒫Q
23 elpwi a𝒫QaQ
24 22 23 syl QVR:Q0+∞a𝒫domRaQ
25 omsfval QVR:Q0+∞aQtoOMeasRa=supranxz𝒫domR|azzω*yxRy0+∞<
26 15 16 24 25 syl3anc QVR:Q0+∞a𝒫domRtoOMeasRa=supranxz𝒫domR|azzω*yxRy0+∞<
27 26 10 eqeltrd QVR:Q0+∞a𝒫domRtoOMeasRa0+∞
28 10 14 27 fmpt2d QVR:Q0+∞toOMeasR:𝒫domR0+∞