Metamath Proof Explorer


Theorem omsf

Description: A constructed outer measure is a function. (Contributed by Thierry Arnoux, 17-Sep-2019) (Revised by AV, 4-Oct-2020)

Ref Expression
Assertion omsf Q V R : Q 0 +∞ toOMeas R : 𝒫 dom R 0 +∞

Proof

Step Hyp Ref Expression
1 iccssxr 0 +∞ *
2 xrltso < Or *
3 soss 0 +∞ * < Or * < Or 0 +∞
4 1 2 3 mp2 < Or 0 +∞
5 4 a1i Q V R : Q 0 +∞ a 𝒫 dom R < Or 0 +∞
6 omscl Q V R : Q 0 +∞ a 𝒫 dom R ran x z 𝒫 dom R | a z z ω * y x R y 0 +∞
7 6 3expa Q V R : Q 0 +∞ a 𝒫 dom R ran x z 𝒫 dom R | a z z ω * y x R y 0 +∞
8 xrge0infss ran x z 𝒫 dom R | a z z ω * y x R y 0 +∞ t 0 +∞ w ran x z 𝒫 dom R | a z z ω * y x R y ¬ w < t w 0 +∞ t < w s ran x z 𝒫 dom R | a z z ω * y x R y s < w
9 7 8 syl Q V R : Q 0 +∞ a 𝒫 dom R t 0 +∞ w ran x z 𝒫 dom R | a z z ω * y x R y ¬ w < t w 0 +∞ t < w s ran x z 𝒫 dom R | a z z ω * y x R y s < w
10 5 9 infcl Q V R : Q 0 +∞ a 𝒫 dom R sup ran x z 𝒫 dom R | a z z ω * y x R y 0 +∞ < 0 +∞
11 fex R : Q 0 +∞ Q V R V
12 11 ancoms Q V R : Q 0 +∞ R V
13 omsval R V toOMeas R = a 𝒫 dom R sup ran x z 𝒫 dom R | a z z ω * y x R y 0 +∞ <
14 12 13 syl Q V R : Q 0 +∞ toOMeas R = a 𝒫 dom R sup ran x z 𝒫 dom R | a z z ω * y x R y 0 +∞ <
15 simpll Q V R : Q 0 +∞ a 𝒫 dom R Q V
16 simplr Q V R : Q 0 +∞ a 𝒫 dom R R : Q 0 +∞
17 simpr Q V R : Q 0 +∞ a 𝒫 dom R a 𝒫 dom R
18 fdm R : Q 0 +∞ dom R = Q
19 18 unieqd R : Q 0 +∞ dom R = Q
20 19 pweqd R : Q 0 +∞ 𝒫 dom R = 𝒫 Q
21 20 ad2antlr Q V R : Q 0 +∞ a 𝒫 dom R 𝒫 dom R = 𝒫 Q
22 17 21 eleqtrd Q V R : Q 0 +∞ a 𝒫 dom R a 𝒫 Q
23 elpwi a 𝒫 Q a Q
24 22 23 syl Q V R : Q 0 +∞ a 𝒫 dom R a Q
25 omsfval Q V R : Q 0 +∞ a Q toOMeas R a = sup ran x z 𝒫 dom R | a z z ω * y x R y 0 +∞ <
26 15 16 24 25 syl3anc Q V R : Q 0 +∞ a 𝒫 dom R toOMeas R a = sup ran x z 𝒫 dom R | a z z ω * y x R y 0 +∞ <
27 26 10 eqeltrd Q V R : Q 0 +∞ a 𝒫 dom R toOMeas R a 0 +∞
28 10 14 27 fmpt2d Q V R : Q 0 +∞ toOMeas R : 𝒫 dom R 0 +∞