Step |
Hyp |
Ref |
Expression |
1 |
|
oms.m |
|
2 |
|
oms.o |
|
3 |
|
oms.r |
|
4 |
|
oms.d |
|
5 |
|
oms.0 |
|
6 |
1
|
fveq1i |
|
7 |
|
0ss |
|
8 |
3
|
fdmd |
|
9 |
8
|
unieqd |
|
10 |
7 9
|
sseqtrid |
|
11 |
|
omsfval |
|
12 |
2 3 10 11
|
syl3anc |
|
13 |
|
iccssxr |
|
14 |
|
xrltso |
|
15 |
|
soss |
|
16 |
13 14 15
|
mp2 |
|
17 |
16
|
a1i |
|
18 |
|
0e0iccpnf |
|
19 |
18
|
a1i |
|
20 |
4
|
snssd |
|
21 |
|
p0ex |
|
22 |
21
|
elpw |
|
23 |
20 22
|
sylibr |
|
24 |
|
0ss |
|
25 |
|
0ex |
|
26 |
|
snct |
|
27 |
25 26
|
ax-mp |
|
28 |
24 27
|
pm3.2i |
|
29 |
23 28
|
jctir |
|
30 |
|
unieq |
|
31 |
30
|
sseq2d |
|
32 |
|
breq1 |
|
33 |
31 32
|
anbi12d |
|
34 |
33
|
elrab |
|
35 |
29 34
|
sylibr |
|
36 |
|
simpr |
|
37 |
36
|
fveq2d |
|
38 |
5
|
adantr |
|
39 |
37 38
|
eqtrd |
|
40 |
39 4 19
|
esumsn |
|
41 |
40
|
eqcomd |
|
42 |
|
esumeq1 |
|
43 |
42
|
rspceeqv |
|
44 |
35 41 43
|
syl2anc |
|
45 |
|
0xr |
|
46 |
|
eqid |
|
47 |
46
|
elrnmpt |
|
48 |
45 47
|
ax-mp |
|
49 |
44 48
|
sylibr |
|
50 |
|
nfv |
|
51 |
|
nfmpt1 |
|
52 |
51
|
nfrn |
|
53 |
52
|
nfcri |
|
54 |
50 53
|
nfan |
|
55 |
|
simpr |
|
56 |
|
vex |
|
57 |
|
nfv |
|
58 |
|
nfcv |
|
59 |
|
nfcv |
|
60 |
59
|
nfesum1 |
|
61 |
58 60
|
nfmpt |
|
62 |
61
|
nfrn |
|
63 |
62
|
nfcri |
|
64 |
57 63
|
nfan |
|
65 |
|
nfv |
|
66 |
64 65
|
nfan |
|
67 |
60
|
nfeq2 |
|
68 |
66 67
|
nfan |
|
69 |
3
|
ad4antr |
|
70 |
|
ssrab2 |
|
71 |
|
simpllr |
|
72 |
70 71
|
sselid |
|
73 |
8
|
pweqd |
|
74 |
73
|
ad4antr |
|
75 |
72 74
|
eleqtrd |
|
76 |
75
|
elpwid |
|
77 |
|
simpr |
|
78 |
76 77
|
sseldd |
|
79 |
69 78
|
ffvelrnd |
|
80 |
79
|
ex |
|
81 |
68 80
|
ralrimi |
|
82 |
59
|
esumcl |
|
83 |
56 81 82
|
sylancr |
|
84 |
55 83
|
eqeltrd |
|
85 |
|
vex |
|
86 |
46
|
elrnmpt |
|
87 |
85 86
|
ax-mp |
|
88 |
87
|
biimpi |
|
89 |
88
|
adantl |
|
90 |
54 84 89
|
r19.29af |
|
91 |
|
pnfxr |
|
92 |
|
iccgelb |
|
93 |
45 91 92
|
mp3an12 |
|
94 |
90 93
|
syl |
|
95 |
13 90
|
sselid |
|
96 |
|
xrlenlt |
|
97 |
96
|
bicomd |
|
98 |
45 95 97
|
sylancr |
|
99 |
94 98
|
mpbird |
|
100 |
17 19 49 99
|
infmin |
|
101 |
12 100
|
eqtrd |
|
102 |
6 101
|
eqtrid |
|