Metamath Proof Explorer


Theorem omwordri

Description: Weak ordering property of ordinal multiplication. Proposition 8.21 of TakeutiZaring p. 63. (Contributed by NM, 20-Dec-2004)

Ref Expression
Assertion omwordri AOnBOnCOnABA𝑜CB𝑜C

Proof

Step Hyp Ref Expression
1 oveq2 x=A𝑜x=A𝑜
2 oveq2 x=B𝑜x=B𝑜
3 1 2 sseq12d x=A𝑜xB𝑜xA𝑜B𝑜
4 oveq2 x=yA𝑜x=A𝑜y
5 oveq2 x=yB𝑜x=B𝑜y
6 4 5 sseq12d x=yA𝑜xB𝑜xA𝑜yB𝑜y
7 oveq2 x=sucyA𝑜x=A𝑜sucy
8 oveq2 x=sucyB𝑜x=B𝑜sucy
9 7 8 sseq12d x=sucyA𝑜xB𝑜xA𝑜sucyB𝑜sucy
10 oveq2 x=CA𝑜x=A𝑜C
11 oveq2 x=CB𝑜x=B𝑜C
12 10 11 sseq12d x=CA𝑜xB𝑜xA𝑜CB𝑜C
13 om0 AOnA𝑜=
14 0ss B𝑜
15 13 14 eqsstrdi AOnA𝑜B𝑜
16 15 ad2antrr AOnBOnABA𝑜B𝑜
17 omcl AOnyOnA𝑜yOn
18 17 3adant2 AOnBOnyOnA𝑜yOn
19 omcl BOnyOnB𝑜yOn
20 19 3adant1 AOnBOnyOnB𝑜yOn
21 simp1 AOnBOnyOnAOn
22 oawordri A𝑜yOnB𝑜yOnAOnA𝑜yB𝑜yA𝑜y+𝑜AB𝑜y+𝑜A
23 18 20 21 22 syl3anc AOnBOnyOnA𝑜yB𝑜yA𝑜y+𝑜AB𝑜y+𝑜A
24 23 imp AOnBOnyOnA𝑜yB𝑜yA𝑜y+𝑜AB𝑜y+𝑜A
25 24 adantrl AOnBOnyOnABA𝑜yB𝑜yA𝑜y+𝑜AB𝑜y+𝑜A
26 oaword AOnBOnB𝑜yOnABB𝑜y+𝑜AB𝑜y+𝑜B
27 20 26 syld3an3 AOnBOnyOnABB𝑜y+𝑜AB𝑜y+𝑜B
28 27 biimpa AOnBOnyOnABB𝑜y+𝑜AB𝑜y+𝑜B
29 28 adantrr AOnBOnyOnABA𝑜yB𝑜yB𝑜y+𝑜AB𝑜y+𝑜B
30 25 29 sstrd AOnBOnyOnABA𝑜yB𝑜yA𝑜y+𝑜AB𝑜y+𝑜B
31 omsuc AOnyOnA𝑜sucy=A𝑜y+𝑜A
32 31 3adant2 AOnBOnyOnA𝑜sucy=A𝑜y+𝑜A
33 32 adantr AOnBOnyOnABA𝑜yB𝑜yA𝑜sucy=A𝑜y+𝑜A
34 omsuc BOnyOnB𝑜sucy=B𝑜y+𝑜B
35 34 3adant1 AOnBOnyOnB𝑜sucy=B𝑜y+𝑜B
36 35 adantr AOnBOnyOnABA𝑜yB𝑜yB𝑜sucy=B𝑜y+𝑜B
37 30 33 36 3sstr4d AOnBOnyOnABA𝑜yB𝑜yA𝑜sucyB𝑜sucy
38 37 exp520 AOnBOnyOnABA𝑜yB𝑜yA𝑜sucyB𝑜sucy
39 38 com3r yOnAOnBOnABA𝑜yB𝑜yA𝑜sucyB𝑜sucy
40 39 imp4c yOnAOnBOnABA𝑜yB𝑜yA𝑜sucyB𝑜sucy
41 vex xV
42 ss2iun yxA𝑜yB𝑜yyxA𝑜yyxB𝑜y
43 omlim AOnxVLimxA𝑜x=yxA𝑜y
44 43 ad2ant2rl AOnxVLimxBOnxVLimxA𝑜x=yxA𝑜y
45 omlim BOnxVLimxB𝑜x=yxB𝑜y
46 45 adantl AOnxVLimxBOnxVLimxB𝑜x=yxB𝑜y
47 44 46 sseq12d AOnxVLimxBOnxVLimxA𝑜xB𝑜xyxA𝑜yyxB𝑜y
48 42 47 imbitrrid AOnxVLimxBOnxVLimxyxA𝑜yB𝑜yA𝑜xB𝑜x
49 48 anandirs AOnBOnxVLimxyxA𝑜yB𝑜yA𝑜xB𝑜x
50 41 49 mpanr1 AOnBOnLimxyxA𝑜yB𝑜yA𝑜xB𝑜x
51 50 expcom LimxAOnBOnyxA𝑜yB𝑜yA𝑜xB𝑜x
52 51 adantrd LimxAOnBOnAByxA𝑜yB𝑜yA𝑜xB𝑜x
53 3 6 9 12 16 40 52 tfinds3 COnAOnBOnABA𝑜CB𝑜C
54 53 expd COnAOnBOnABA𝑜CB𝑜C
55 54 3impib COnAOnBOnABA𝑜CB𝑜C
56 55 3coml AOnBOnCOnABA𝑜CB𝑜C