| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  | 
						
							| 2 |  | oveq2 |  | 
						
							| 3 | 1 2 | sseq12d |  | 
						
							| 4 |  | oveq2 |  | 
						
							| 5 |  | oveq2 |  | 
						
							| 6 | 4 5 | sseq12d |  | 
						
							| 7 |  | oveq2 |  | 
						
							| 8 |  | oveq2 |  | 
						
							| 9 | 7 8 | sseq12d |  | 
						
							| 10 |  | oveq2 |  | 
						
							| 11 |  | oveq2 |  | 
						
							| 12 | 10 11 | sseq12d |  | 
						
							| 13 |  | om0 |  | 
						
							| 14 |  | 0ss |  | 
						
							| 15 | 13 14 | eqsstrdi |  | 
						
							| 16 | 15 | ad2antrr |  | 
						
							| 17 |  | omcl |  | 
						
							| 18 | 17 | 3adant2 |  | 
						
							| 19 |  | omcl |  | 
						
							| 20 | 19 | 3adant1 |  | 
						
							| 21 |  | simp1 |  | 
						
							| 22 |  | oawordri |  | 
						
							| 23 | 18 20 21 22 | syl3anc |  | 
						
							| 24 | 23 | imp |  | 
						
							| 25 | 24 | adantrl |  | 
						
							| 26 |  | oaword |  | 
						
							| 27 | 20 26 | syld3an3 |  | 
						
							| 28 | 27 | biimpa |  | 
						
							| 29 | 28 | adantrr |  | 
						
							| 30 | 25 29 | sstrd |  | 
						
							| 31 |  | omsuc |  | 
						
							| 32 | 31 | 3adant2 |  | 
						
							| 33 | 32 | adantr |  | 
						
							| 34 |  | omsuc |  | 
						
							| 35 | 34 | 3adant1 |  | 
						
							| 36 | 35 | adantr |  | 
						
							| 37 | 30 33 36 | 3sstr4d |  | 
						
							| 38 | 37 | exp520 |  | 
						
							| 39 | 38 | com3r |  | 
						
							| 40 | 39 | imp4c |  | 
						
							| 41 |  | vex |  | 
						
							| 42 |  | ss2iun |  | 
						
							| 43 |  | omlim |  | 
						
							| 44 | 43 | ad2ant2rl |  | 
						
							| 45 |  | omlim |  | 
						
							| 46 | 45 | adantl |  | 
						
							| 47 | 44 46 | sseq12d |  | 
						
							| 48 | 42 47 | imbitrrid |  | 
						
							| 49 | 48 | anandirs |  | 
						
							| 50 | 41 49 | mpanr1 |  | 
						
							| 51 | 50 | expcom |  | 
						
							| 52 | 51 | adantrd |  | 
						
							| 53 | 3 6 9 12 16 40 52 | tfinds3 |  | 
						
							| 54 | 53 | expd |  | 
						
							| 55 | 54 | 3impib |  | 
						
							| 56 | 55 | 3coml |  |