Description: Weak ordering property of ordinal multiplication. Proposition 8.21 of TakeutiZaring p. 63. (Contributed by NM, 20-Dec-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | omwordri | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 | |
|
2 | oveq2 | |
|
3 | 1 2 | sseq12d | |
4 | oveq2 | |
|
5 | oveq2 | |
|
6 | 4 5 | sseq12d | |
7 | oveq2 | |
|
8 | oveq2 | |
|
9 | 7 8 | sseq12d | |
10 | oveq2 | |
|
11 | oveq2 | |
|
12 | 10 11 | sseq12d | |
13 | om0 | |
|
14 | 0ss | |
|
15 | 13 14 | eqsstrdi | |
16 | 15 | ad2antrr | |
17 | omcl | |
|
18 | 17 | 3adant2 | |
19 | omcl | |
|
20 | 19 | 3adant1 | |
21 | simp1 | |
|
22 | oawordri | |
|
23 | 18 20 21 22 | syl3anc | |
24 | 23 | imp | |
25 | 24 | adantrl | |
26 | oaword | |
|
27 | 20 26 | syld3an3 | |
28 | 27 | biimpa | |
29 | 28 | adantrr | |
30 | 25 29 | sstrd | |
31 | omsuc | |
|
32 | 31 | 3adant2 | |
33 | 32 | adantr | |
34 | omsuc | |
|
35 | 34 | 3adant1 | |
36 | 35 | adantr | |
37 | 30 33 36 | 3sstr4d | |
38 | 37 | exp520 | |
39 | 38 | com3r | |
40 | 39 | imp4c | |
41 | vex | |
|
42 | ss2iun | |
|
43 | omlim | |
|
44 | 43 | ad2ant2rl | |
45 | omlim | |
|
46 | 45 | adantl | |
47 | 44 46 | sseq12d | |
48 | 42 47 | imbitrrid | |
49 | 48 | anandirs | |
50 | 41 49 | mpanr1 | |
51 | 50 | expcom | |
52 | 51 | adantrd | |
53 | 3 6 9 12 16 40 52 | tfinds3 | |
54 | 53 | expd | |
55 | 54 | 3impib | |
56 | 55 | 3coml | |