Description: A set is open in the standard topology of the reals precisely when every point can be enclosed in an arbitrarily small ball. (Contributed by Jeff Hankins, 22-Sep-2013) (Proof shortened by Mario Carneiro, 30-Jan-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | opnrebl2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | 1 | rexmet | |
3 | eqid | |
|
4 | 1 3 | tgioo | |
5 | 4 | mopnss | |
6 | 2 5 | mpan | |
7 | 4 | mopni3 | |
8 | 7 | ex | |
9 | 2 8 | mp3an1 | |
10 | 6 | sselda | |
11 | rpre | |
|
12 | 1 | bl2ioo | |
13 | 11 12 | sylan2 | |
14 | 13 | sseq1d | |
15 | 14 | anbi2d | |
16 | 15 | rexbidva | |
17 | 16 | biimpd | |
18 | rpre | |
|
19 | ltle | |
|
20 | 11 18 19 | syl2anr | |
21 | 20 | anim1d | |
22 | 21 | reximdva | |
23 | 17 22 | syl9 | |
24 | 10 23 | syl | |
25 | 9 24 | mpdd | |
26 | 25 | expimpd | |
27 | 26 | ralrimivv | |
28 | 6 27 | jca | |
29 | ssel2 | |
|
30 | 1rp | |
|
31 | simpr | |
|
32 | 31 | reximi | |
33 | 32 | ralimi | |
34 | biidd | |
|
35 | 34 | rspcv | |
36 | 30 33 35 | mpsyl | |
37 | 14 | rexbidva | |
38 | 36 37 | imbitrrid | |
39 | 29 38 | syl | |
40 | 39 | ralimdva | |
41 | 40 | imdistani | |
42 | 4 | elmopn2 | |
43 | 2 42 | ax-mp | |
44 | 41 43 | sylibr | |
45 | 28 44 | impbii | |