Metamath Proof Explorer


Theorem opnrebl2

Description: A set is open in the standard topology of the reals precisely when every point can be enclosed in an arbitrarily small ball. (Contributed by Jeff Hankins, 22-Sep-2013) (Proof shortened by Mario Carneiro, 30-Jan-2014)

Ref Expression
Assertion opnrebl2 AtopGenran.AxAy+z+zyxzx+zA

Proof

Step Hyp Ref Expression
1 eqid abs2=abs2
2 1 rexmet abs2∞Met
3 eqid MetOpenabs2=MetOpenabs2
4 1 3 tgioo topGenran.=MetOpenabs2
5 4 mopnss abs2∞MetAtopGenran.A
6 2 5 mpan AtopGenran.A
7 4 mopni3 abs2∞MetAtopGenran.xAy+z+z<yxballabs2zA
8 7 ex abs2∞MetAtopGenran.xAy+z+z<yxballabs2zA
9 2 8 mp3an1 AtopGenran.xAy+z+z<yxballabs2zA
10 6 sselda AtopGenran.xAx
11 rpre z+z
12 1 bl2ioo xzxballabs2z=xzx+z
13 11 12 sylan2 xz+xballabs2z=xzx+z
14 13 sseq1d xz+xballabs2zAxzx+zA
15 14 anbi2d xz+z<yxballabs2zAz<yxzx+zA
16 15 rexbidva xz+z<yxballabs2zAz+z<yxzx+zA
17 16 biimpd xz+z<yxballabs2zAz+z<yxzx+zA
18 rpre y+y
19 ltle zyz<yzy
20 11 18 19 syl2anr y+z+z<yzy
21 20 anim1d y+z+z<yxzx+zAzyxzx+zA
22 21 reximdva y+z+z<yxzx+zAz+zyxzx+zA
23 17 22 syl9 xy+z+z<yxballabs2zAz+zyxzx+zA
24 10 23 syl AtopGenran.xAy+z+z<yxballabs2zAz+zyxzx+zA
25 9 24 mpdd AtopGenran.xAy+z+zyxzx+zA
26 25 expimpd AtopGenran.xAy+z+zyxzx+zA
27 26 ralrimivv AtopGenran.xAy+z+zyxzx+zA
28 6 27 jca AtopGenran.AxAy+z+zyxzx+zA
29 ssel2 AxAx
30 1rp 1+
31 simpr zyxzx+zAxzx+zA
32 31 reximi z+zyxzx+zAz+xzx+zA
33 32 ralimi y+z+zyxzx+zAy+z+xzx+zA
34 biidd y=1z+xzx+zAz+xzx+zA
35 34 rspcv 1+y+z+xzx+zAz+xzx+zA
36 30 33 35 mpsyl y+z+zyxzx+zAz+xzx+zA
37 14 rexbidva xz+xballabs2zAz+xzx+zA
38 36 37 imbitrrid xy+z+zyxzx+zAz+xballabs2zA
39 29 38 syl AxAy+z+zyxzx+zAz+xballabs2zA
40 39 ralimdva AxAy+z+zyxzx+zAxAz+xballabs2zA
41 40 imdistani AxAy+z+zyxzx+zAAxAz+xballabs2zA
42 4 elmopn2 abs2∞MetAtopGenran.AxAz+xballabs2zA
43 2 42 ax-mp AtopGenran.AxAz+xballabs2zA
44 41 43 sylibr AxAy+z+zyxzx+zAAtopGenran.
45 28 44 impbii AtopGenran.AxAy+z+zyxzx+zA