| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oddz |
|
| 2 |
|
oddz |
|
| 3 |
|
zaddcl |
|
| 4 |
1 2 3
|
syl2an |
|
| 5 |
|
eqeq1 |
|
| 6 |
5
|
rexbidv |
|
| 7 |
|
dfodd6 |
|
| 8 |
6 7
|
elrab2 |
|
| 9 |
|
eqeq1 |
|
| 10 |
9
|
rexbidv |
|
| 11 |
|
dfodd6 |
|
| 12 |
10 11
|
elrab2 |
|
| 13 |
|
zaddcl |
|
| 14 |
13
|
ex |
|
| 15 |
14
|
ad3antlr |
|
| 16 |
15
|
imp |
|
| 17 |
16
|
adantr |
|
| 18 |
17
|
peano2zd |
|
| 19 |
|
oveq2 |
|
| 20 |
19
|
eqeq2d |
|
| 21 |
20
|
adantl |
|
| 22 |
|
oveq12 |
|
| 23 |
22
|
ex |
|
| 24 |
23
|
ad3antlr |
|
| 25 |
24
|
imp |
|
| 26 |
|
zcn |
|
| 27 |
|
zcn |
|
| 28 |
|
2cnd |
|
| 29 |
28
|
anim1i |
|
| 30 |
29
|
ancoms |
|
| 31 |
|
mulcl |
|
| 32 |
30 31
|
syl |
|
| 33 |
|
1cnd |
|
| 34 |
|
2cnd |
|
| 35 |
|
mulcl |
|
| 36 |
34 35
|
sylan |
|
| 37 |
32 33 36 33
|
add4d |
|
| 38 |
|
2cnd |
|
| 39 |
|
simpl |
|
| 40 |
|
simpr |
|
| 41 |
38 39 40
|
adddid |
|
| 42 |
41
|
oveq1d |
|
| 43 |
|
addcl |
|
| 44 |
38 43 33
|
adddid |
|
| 45 |
|
1p1e2 |
|
| 46 |
|
2t1e2 |
|
| 47 |
45 46
|
eqtr4i |
|
| 48 |
47
|
a1i |
|
| 49 |
48
|
oveq2d |
|
| 50 |
42 44 49
|
3eqtr4rd |
|
| 51 |
37 50
|
eqtrd |
|
| 52 |
26 27 51
|
syl2an |
|
| 53 |
52
|
ex |
|
| 54 |
53
|
ad3antlr |
|
| 55 |
54
|
imp |
|
| 56 |
55
|
adantr |
|
| 57 |
25 56
|
eqtrd |
|
| 58 |
18 21 57
|
rspcedvd |
|
| 59 |
58
|
rexlimdva2 |
|
| 60 |
59
|
expimpd |
|
| 61 |
60
|
rexlimdva2 |
|
| 62 |
61
|
imp |
|
| 63 |
12 62
|
biimtrid |
|
| 64 |
8 63
|
sylbi |
|
| 65 |
64
|
imp |
|
| 66 |
|
eqeq1 |
|
| 67 |
66
|
rexbidv |
|
| 68 |
|
dfeven4 |
|
| 69 |
67 68
|
elrab2 |
|
| 70 |
4 65 69
|
sylanbrc |
|