Description: The sum of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014) (Revised by AV, 20-Jun-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | opoeALTV | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oddz | |
|
2 | oddz | |
|
3 | zaddcl | |
|
4 | 1 2 3 | syl2an | |
5 | eqeq1 | |
|
6 | 5 | rexbidv | |
7 | dfodd6 | |
|
8 | 6 7 | elrab2 | |
9 | eqeq1 | |
|
10 | 9 | rexbidv | |
11 | dfodd6 | |
|
12 | 10 11 | elrab2 | |
13 | zaddcl | |
|
14 | 13 | ex | |
15 | 14 | ad3antlr | |
16 | 15 | imp | |
17 | 16 | adantr | |
18 | 17 | peano2zd | |
19 | oveq2 | |
|
20 | 19 | eqeq2d | |
21 | 20 | adantl | |
22 | oveq12 | |
|
23 | 22 | ex | |
24 | 23 | ad3antlr | |
25 | 24 | imp | |
26 | zcn | |
|
27 | zcn | |
|
28 | 2cnd | |
|
29 | 28 | anim1i | |
30 | 29 | ancoms | |
31 | mulcl | |
|
32 | 30 31 | syl | |
33 | 1cnd | |
|
34 | 2cnd | |
|
35 | mulcl | |
|
36 | 34 35 | sylan | |
37 | 32 33 36 33 | add4d | |
38 | 2cnd | |
|
39 | simpl | |
|
40 | simpr | |
|
41 | 38 39 40 | adddid | |
42 | 41 | oveq1d | |
43 | addcl | |
|
44 | 38 43 33 | adddid | |
45 | 1p1e2 | |
|
46 | 2t1e2 | |
|
47 | 45 46 | eqtr4i | |
48 | 47 | a1i | |
49 | 48 | oveq2d | |
50 | 42 44 49 | 3eqtr4rd | |
51 | 37 50 | eqtrd | |
52 | 26 27 51 | syl2an | |
53 | 52 | ex | |
54 | 53 | ad3antlr | |
55 | 54 | imp | |
56 | 55 | adantr | |
57 | 25 56 | eqtrd | |
58 | 18 21 57 | rspcedvd | |
59 | 58 | rexlimdva2 | |
60 | 59 | expimpd | |
61 | 60 | rexlimdva2 | |
62 | 61 | imp | |
63 | 12 62 | biimtrid | |
64 | 8 63 | sylbi | |
65 | 64 | imp | |
66 | eqeq1 | |
|
67 | 66 | rexbidv | |
68 | dfeven4 | |
|
69 | 67 68 | elrab2 | |
70 | 4 65 69 | sylanbrc | |