Metamath Proof Explorer


Theorem oppfdiag

Description: A diagonal functor for opposite categories is the opposite functor of the diagonal functor for original categories post-composed by an isomorphism ( fucoppc ). (Contributed by Zhi Wang, 19-Nov-2025)

Ref Expression
Hypotheses oppfdiag.o O = oppCat C
oppfdiag.p P = oppCat D
oppfdiag.l L = C Δ func D
oppfdiag.c φ C Cat
oppfdiag.d φ D Cat
oppfdiag.f No typesetting found for |- ( ph -> F = ( oppFunc |` ( D Func C ) ) ) with typecode |-
oppfdiag.n N = D Nat C
oppfdiag.g φ G = m D Func C , n D Func C I n N m
Assertion oppfdiag Could not format assertion : No typesetting found for |- ( ph -> ( <. F , G >. o.func ( oppFunc ` L ) ) = ( O DiagFunc P ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 oppfdiag.o O = oppCat C
2 oppfdiag.p P = oppCat D
3 oppfdiag.l L = C Δ func D
4 oppfdiag.c φ C Cat
5 oppfdiag.d φ D Cat
6 oppfdiag.f Could not format ( ph -> F = ( oppFunc |` ( D Func C ) ) ) : No typesetting found for |- ( ph -> F = ( oppFunc |` ( D Func C ) ) ) with typecode |-
7 oppfdiag.n N = D Nat C
8 oppfdiag.g φ G = m D Func C , n D Func C I n N m
9 eqid Base C = Base C
10 1 9 oppcbas Base C = Base O
11 eqid P FuncCat O = P FuncCat O
12 11 fucbas P Func O = Base P FuncCat O
13 eqid oppCat D FuncCat C = oppCat D FuncCat C
14 eqid D FuncCat C = D FuncCat C
15 3 4 5 14 diagcl φ L C Func D FuncCat C
16 1 13 15 oppfoppc2 Could not format ( ph -> ( oppFunc ` L ) e. ( O Func ( oppCat ` ( D FuncCat C ) ) ) ) : No typesetting found for |- ( ph -> ( oppFunc ` L ) e. ( O Func ( oppCat ` ( D FuncCat C ) ) ) ) with typecode |-
17 2 1 14 13 11 7 6 8 5 4 fucoppcfunc φ F oppCat D FuncCat C Func P FuncCat O G
18 df-br F oppCat D FuncCat C Func P FuncCat O G F G oppCat D FuncCat C Func P FuncCat O
19 17 18 sylib φ F G oppCat D FuncCat C Func P FuncCat O
20 16 19 cofucl Could not format ( ph -> ( <. F , G >. o.func ( oppFunc ` L ) ) e. ( O Func ( P FuncCat O ) ) ) : No typesetting found for |- ( ph -> ( <. F , G >. o.func ( oppFunc ` L ) ) e. ( O Func ( P FuncCat O ) ) ) with typecode |-
21 20 func1st2nd Could not format ( ph -> ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) ( O Func ( P FuncCat O ) ) ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) ) : No typesetting found for |- ( ph -> ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) ( O Func ( P FuncCat O ) ) ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) ) with typecode |-
22 10 12 21 funcf1 Could not format ( ph -> ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) : ( Base ` C ) --> ( P Func O ) ) : No typesetting found for |- ( ph -> ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) : ( Base ` C ) --> ( P Func O ) ) with typecode |-
23 22 ffnd Could not format ( ph -> ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) Fn ( Base ` C ) ) : No typesetting found for |- ( ph -> ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) Fn ( Base ` C ) ) with typecode |-
24 eqid O Δ func P = O Δ func P
25 1 oppccat C Cat O Cat
26 4 25 syl φ O Cat
27 2 oppccat D Cat P Cat
28 5 27 syl φ P Cat
29 24 26 28 11 diagcl φ O Δ func P O Func P FuncCat O
30 29 func1st2nd φ 1 st O Δ func P O Func P FuncCat O 2 nd O Δ func P
31 10 12 30 funcf1 φ 1 st O Δ func P : Base C P Func O
32 31 ffnd φ 1 st O Δ func P Fn Base C
33 16 adantr Could not format ( ( ph /\ x e. ( Base ` C ) ) -> ( oppFunc ` L ) e. ( O Func ( oppCat ` ( D FuncCat C ) ) ) ) : No typesetting found for |- ( ( ph /\ x e. ( Base ` C ) ) -> ( oppFunc ` L ) e. ( O Func ( oppCat ` ( D FuncCat C ) ) ) ) with typecode |-
34 19 adantr φ x Base C F G oppCat D FuncCat C Func P FuncCat O
35 simpr φ x Base C x Base C
36 10 33 34 35 cofu1 Could not format ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) ` x ) = ( ( 1st ` <. F , G >. ) ` ( ( 1st ` ( oppFunc ` L ) ) ` x ) ) ) : No typesetting found for |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) ` x ) = ( ( 1st ` <. F , G >. ) ` ( ( 1st ` ( oppFunc ` L ) ) ` x ) ) ) with typecode |-
37 17 func1st φ 1 st F G = F
38 15 oppf1 Could not format ( ph -> ( 1st ` ( oppFunc ` L ) ) = ( 1st ` L ) ) : No typesetting found for |- ( ph -> ( 1st ` ( oppFunc ` L ) ) = ( 1st ` L ) ) with typecode |-
39 38 fveq1d Could not format ( ph -> ( ( 1st ` ( oppFunc ` L ) ) ` x ) = ( ( 1st ` L ) ` x ) ) : No typesetting found for |- ( ph -> ( ( 1st ` ( oppFunc ` L ) ) ` x ) = ( ( 1st ` L ) ` x ) ) with typecode |-
40 37 39 fveq12d Could not format ( ph -> ( ( 1st ` <. F , G >. ) ` ( ( 1st ` ( oppFunc ` L ) ) ` x ) ) = ( F ` ( ( 1st ` L ) ` x ) ) ) : No typesetting found for |- ( ph -> ( ( 1st ` <. F , G >. ) ` ( ( 1st ` ( oppFunc ` L ) ) ` x ) ) = ( F ` ( ( 1st ` L ) ` x ) ) ) with typecode |-
41 40 adantr Could not format ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` <. F , G >. ) ` ( ( 1st ` ( oppFunc ` L ) ) ` x ) ) = ( F ` ( ( 1st ` L ) ` x ) ) ) : No typesetting found for |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` <. F , G >. ) ` ( ( 1st ` ( oppFunc ` L ) ) ` x ) ) = ( F ` ( ( 1st ` L ) ` x ) ) ) with typecode |-
42 4 adantr φ x Base C C Cat
43 5 adantr φ x Base C D Cat
44 6 adantr Could not format ( ( ph /\ x e. ( Base ` C ) ) -> F = ( oppFunc |` ( D Func C ) ) ) : No typesetting found for |- ( ( ph /\ x e. ( Base ` C ) ) -> F = ( oppFunc |` ( D Func C ) ) ) with typecode |-
45 1 2 3 42 43 44 9 35 oppfdiag1 φ x Base C F 1 st L x = 1 st O Δ func P x
46 36 41 45 3eqtrd Could not format ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) ` x ) = ( ( 1st ` ( O DiagFunc P ) ) ` x ) ) : No typesetting found for |- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) ` x ) = ( ( 1st ` ( O DiagFunc P ) ) ` x ) ) with typecode |-
47 23 32 46 eqfnfvd Could not format ( ph -> ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) = ( 1st ` ( O DiagFunc P ) ) ) : No typesetting found for |- ( ph -> ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) = ( 1st ` ( O DiagFunc P ) ) ) with typecode |-
48 10 21 funcfn2 Could not format ( ph -> ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) : No typesetting found for |- ( ph -> ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) Fn ( ( Base ` C ) X. ( Base ` C ) ) ) with typecode |-
49 10 30 funcfn2 φ 2 nd O Δ func P Fn Base C × Base C
50 eqid Hom C = Hom C
51 50 1 oppchom x Hom O y = y Hom C x
52 51 a1i φ x Base C y Base C x Hom O y = y Hom C x
53 eqid Hom O = Hom O
54 eqid P Nat O = P Nat O
55 11 54 fuchom P Nat O = Hom P FuncCat O
56 21 adantr Could not format ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) ( O Func ( P FuncCat O ) ) ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) ) : No typesetting found for |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) ( O Func ( P FuncCat O ) ) ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) ) with typecode |-
57 simprl φ x Base C y Base C x Base C
58 simprr φ x Base C y Base C y Base C
59 10 53 55 56 57 58 funcf2 Could not format ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) y ) : ( x ( Hom ` O ) y ) --> ( ( ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) ` x ) ( P Nat O ) ( ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) ` y ) ) ) : No typesetting found for |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) y ) : ( x ( Hom ` O ) y ) --> ( ( ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) ` x ) ( P Nat O ) ( ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) ` y ) ) ) with typecode |-
60 52 59 feq2dd Could not format ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) y ) : ( y ( Hom ` C ) x ) --> ( ( ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) ` x ) ( P Nat O ) ( ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) ` y ) ) ) : No typesetting found for |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) y ) : ( y ( Hom ` C ) x ) --> ( ( ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) ` x ) ( P Nat O ) ( ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) ` y ) ) ) with typecode |-
61 60 ffnd Could not format ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) y ) Fn ( y ( Hom ` C ) x ) ) : No typesetting found for |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) y ) Fn ( y ( Hom ` C ) x ) ) with typecode |-
62 30 adantr φ x Base C y Base C 1 st O Δ func P O Func P FuncCat O 2 nd O Δ func P
63 10 53 55 62 57 58 funcf2 φ x Base C y Base C x 2 nd O Δ func P y : x Hom O y 1 st O Δ func P x P Nat O 1 st O Δ func P y
64 52 63 feq2dd φ x Base C y Base C x 2 nd O Δ func P y : y Hom C x 1 st O Δ func P x P Nat O 1 st O Δ func P y
65 64 ffnd φ x Base C y Base C x 2 nd O Δ func P y Fn y Hom C x
66 16 ad2antrr Could not format ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> ( oppFunc ` L ) e. ( O Func ( oppCat ` ( D FuncCat C ) ) ) ) : No typesetting found for |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> ( oppFunc ` L ) e. ( O Func ( oppCat ` ( D FuncCat C ) ) ) ) with typecode |-
67 19 ad2antrr φ x Base C y Base C f y Hom C x F G oppCat D FuncCat C Func P FuncCat O
68 57 adantr φ x Base C y Base C f y Hom C x x Base C
69 58 adantr φ x Base C y Base C f y Hom C x y Base C
70 simpr φ x Base C y Base C f y Hom C x f y Hom C x
71 70 51 eleqtrrdi φ x Base C y Base C f y Hom C x f x Hom O y
72 10 66 67 68 69 53 71 cofu2 Could not format ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> ( ( x ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) y ) ` f ) = ( ( ( ( 1st ` ( oppFunc ` L ) ) ` x ) ( 2nd ` <. F , G >. ) ( ( 1st ` ( oppFunc ` L ) ) ` y ) ) ` ( ( x ( 2nd ` ( oppFunc ` L ) ) y ) ` f ) ) ) : No typesetting found for |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> ( ( x ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) y ) ` f ) = ( ( ( ( 1st ` ( oppFunc ` L ) ) ` x ) ( 2nd ` <. F , G >. ) ( ( 1st ` ( oppFunc ` L ) ) ` y ) ) ` ( ( x ( 2nd ` ( oppFunc ` L ) ) y ) ` f ) ) ) with typecode |-
73 17 func2nd φ 2 nd F G = G
74 38 fveq1d Could not format ( ph -> ( ( 1st ` ( oppFunc ` L ) ) ` y ) = ( ( 1st ` L ) ` y ) ) : No typesetting found for |- ( ph -> ( ( 1st ` ( oppFunc ` L ) ) ` y ) = ( ( 1st ` L ) ` y ) ) with typecode |-
75 73 39 74 oveq123d Could not format ( ph -> ( ( ( 1st ` ( oppFunc ` L ) ) ` x ) ( 2nd ` <. F , G >. ) ( ( 1st ` ( oppFunc ` L ) ) ` y ) ) = ( ( ( 1st ` L ) ` x ) G ( ( 1st ` L ) ` y ) ) ) : No typesetting found for |- ( ph -> ( ( ( 1st ` ( oppFunc ` L ) ) ` x ) ( 2nd ` <. F , G >. ) ( ( 1st ` ( oppFunc ` L ) ) ` y ) ) = ( ( ( 1st ` L ) ` x ) G ( ( 1st ` L ) ` y ) ) ) with typecode |-
76 15 oppf2 Could not format ( ph -> ( x ( 2nd ` ( oppFunc ` L ) ) y ) = ( y ( 2nd ` L ) x ) ) : No typesetting found for |- ( ph -> ( x ( 2nd ` ( oppFunc ` L ) ) y ) = ( y ( 2nd ` L ) x ) ) with typecode |-
77 76 fveq1d Could not format ( ph -> ( ( x ( 2nd ` ( oppFunc ` L ) ) y ) ` f ) = ( ( y ( 2nd ` L ) x ) ` f ) ) : No typesetting found for |- ( ph -> ( ( x ( 2nd ` ( oppFunc ` L ) ) y ) ` f ) = ( ( y ( 2nd ` L ) x ) ` f ) ) with typecode |-
78 75 77 fveq12d Could not format ( ph -> ( ( ( ( 1st ` ( oppFunc ` L ) ) ` x ) ( 2nd ` <. F , G >. ) ( ( 1st ` ( oppFunc ` L ) ) ` y ) ) ` ( ( x ( 2nd ` ( oppFunc ` L ) ) y ) ` f ) ) = ( ( ( ( 1st ` L ) ` x ) G ( ( 1st ` L ) ` y ) ) ` ( ( y ( 2nd ` L ) x ) ` f ) ) ) : No typesetting found for |- ( ph -> ( ( ( ( 1st ` ( oppFunc ` L ) ) ` x ) ( 2nd ` <. F , G >. ) ( ( 1st ` ( oppFunc ` L ) ) ` y ) ) ` ( ( x ( 2nd ` ( oppFunc ` L ) ) y ) ` f ) ) = ( ( ( ( 1st ` L ) ` x ) G ( ( 1st ` L ) ` y ) ) ` ( ( y ( 2nd ` L ) x ) ` f ) ) ) with typecode |-
79 78 ad2antrr Could not format ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> ( ( ( ( 1st ` ( oppFunc ` L ) ) ` x ) ( 2nd ` <. F , G >. ) ( ( 1st ` ( oppFunc ` L ) ) ` y ) ) ` ( ( x ( 2nd ` ( oppFunc ` L ) ) y ) ` f ) ) = ( ( ( ( 1st ` L ) ` x ) G ( ( 1st ` L ) ` y ) ) ` ( ( y ( 2nd ` L ) x ) ` f ) ) ) : No typesetting found for |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> ( ( ( ( 1st ` ( oppFunc ` L ) ) ` x ) ( 2nd ` <. F , G >. ) ( ( 1st ` ( oppFunc ` L ) ) ` y ) ) ` ( ( x ( 2nd ` ( oppFunc ` L ) ) y ) ` f ) ) = ( ( ( ( 1st ` L ) ` x ) G ( ( 1st ` L ) ` y ) ) ` ( ( y ( 2nd ` L ) x ) ` f ) ) ) with typecode |-
80 8 ad2antrr φ x Base C y Base C f y Hom C x G = m D Func C , n D Func C I n N m
81 4 ad2antrr φ x Base C y Base C f y Hom C x C Cat
82 5 ad2antrr φ x Base C y Base C f y Hom C x D Cat
83 eqid 1 st L x = 1 st L x
84 3 81 82 9 68 83 diag1cl φ x Base C y Base C f y Hom C x 1 st L x D Func C
85 eqid 1 st L y = 1 st L y
86 3 81 82 9 69 85 diag1cl φ x Base C y Base C f y Hom C x 1 st L y D Func C
87 eqid Base D = Base D
88 3 9 87 50 81 82 69 68 70 diag2 φ x Base C y Base C f y Hom C x y 2 nd L x f = Base D × f
89 3 9 87 50 81 82 69 68 70 7 diag2cl φ x Base C y Base C f y Hom C x Base D × f 1 st L y N 1 st L x
90 80 84 86 88 89 opf2 φ x Base C y Base C f y Hom C x 1 st L x G 1 st L y y 2 nd L x f = Base D × f
91 72 79 90 3eqtrd Could not format ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> ( ( x ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) y ) ` f ) = ( ( Base ` D ) X. { f } ) ) : No typesetting found for |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> ( ( x ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) y ) ` f ) = ( ( Base ` D ) X. { f } ) ) with typecode |-
92 2 87 oppcbas Base D = Base P
93 81 25 syl φ x Base C y Base C f y Hom C x O Cat
94 82 27 syl φ x Base C y Base C f y Hom C x P Cat
95 24 10 92 53 93 94 68 69 71 diag2 φ x Base C y Base C f y Hom C x x 2 nd O Δ func P y f = Base D × f
96 91 95 eqtr4d Could not format ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> ( ( x ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) y ) ` f ) = ( ( x ( 2nd ` ( O DiagFunc P ) ) y ) ` f ) ) : No typesetting found for |- ( ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) /\ f e. ( y ( Hom ` C ) x ) ) -> ( ( x ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) y ) ` f ) = ( ( x ( 2nd ` ( O DiagFunc P ) ) y ) ` f ) ) with typecode |-
97 61 65 96 eqfnfvd Could not format ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) y ) = ( x ( 2nd ` ( O DiagFunc P ) ) y ) ) : No typesetting found for |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) y ) = ( x ( 2nd ` ( O DiagFunc P ) ) y ) ) with typecode |-
98 48 49 97 eqfnovd Could not format ( ph -> ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) = ( 2nd ` ( O DiagFunc P ) ) ) : No typesetting found for |- ( ph -> ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) = ( 2nd ` ( O DiagFunc P ) ) ) with typecode |-
99 47 98 opeq12d Could not format ( ph -> <. ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) , ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) >. = <. ( 1st ` ( O DiagFunc P ) ) , ( 2nd ` ( O DiagFunc P ) ) >. ) : No typesetting found for |- ( ph -> <. ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) , ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) >. = <. ( 1st ` ( O DiagFunc P ) ) , ( 2nd ` ( O DiagFunc P ) ) >. ) with typecode |-
100 relfunc Rel O Func P FuncCat O
101 1st2nd Could not format ( ( Rel ( O Func ( P FuncCat O ) ) /\ ( <. F , G >. o.func ( oppFunc ` L ) ) e. ( O Func ( P FuncCat O ) ) ) -> ( <. F , G >. o.func ( oppFunc ` L ) ) = <. ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) , ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) >. ) : No typesetting found for |- ( ( Rel ( O Func ( P FuncCat O ) ) /\ ( <. F , G >. o.func ( oppFunc ` L ) ) e. ( O Func ( P FuncCat O ) ) ) -> ( <. F , G >. o.func ( oppFunc ` L ) ) = <. ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) , ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) >. ) with typecode |-
102 100 20 101 sylancr Could not format ( ph -> ( <. F , G >. o.func ( oppFunc ` L ) ) = <. ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) , ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) >. ) : No typesetting found for |- ( ph -> ( <. F , G >. o.func ( oppFunc ` L ) ) = <. ( 1st ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) , ( 2nd ` ( <. F , G >. o.func ( oppFunc ` L ) ) ) >. ) with typecode |-
103 1st2nd Rel O Func P FuncCat O O Δ func P O Func P FuncCat O O Δ func P = 1 st O Δ func P 2 nd O Δ func P
104 100 29 103 sylancr φ O Δ func P = 1 st O Δ func P 2 nd O Δ func P
105 99 102 104 3eqtr4d Could not format ( ph -> ( <. F , G >. o.func ( oppFunc ` L ) ) = ( O DiagFunc P ) ) : No typesetting found for |- ( ph -> ( <. F , G >. o.func ( oppFunc ` L ) ) = ( O DiagFunc P ) ) with typecode |-