Metamath Proof Explorer


Theorem ordtopn2

Description: A downward ray ( -oo , P ) is open. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypothesis ordttopon.3 X=domR
Assertion ordtopn2 RVPXxX|¬PRxordTopR

Proof

Step Hyp Ref Expression
1 ordttopon.3 X=domR
2 eqid ranyXxX|¬xRy=ranyXxX|¬xRy
3 eqid ranyXxX|¬yRx=ranyXxX|¬yRx
4 1 2 3 ordtuni RVX=XranyXxX|¬xRyranyXxX|¬yRx
5 4 adantr RVPXX=XranyXxX|¬xRyranyXxX|¬yRx
6 dmexg RVdomRV
7 1 6 eqeltrid RVXV
8 7 adantr RVPXXV
9 5 8 eqeltrrd RVPXXranyXxX|¬xRyranyXxX|¬yRxV
10 uniexb XranyXxX|¬xRyranyXxX|¬yRxVXranyXxX|¬xRyranyXxX|¬yRxV
11 9 10 sylibr RVPXXranyXxX|¬xRyranyXxX|¬yRxV
12 ssfii XranyXxX|¬xRyranyXxX|¬yRxVXranyXxX|¬xRyranyXxX|¬yRxfiXranyXxX|¬xRyranyXxX|¬yRx
13 11 12 syl RVPXXranyXxX|¬xRyranyXxX|¬yRxfiXranyXxX|¬xRyranyXxX|¬yRx
14 fibas fiXranyXxX|¬xRyranyXxX|¬yRxTopBases
15 bastg fiXranyXxX|¬xRyranyXxX|¬yRxTopBasesfiXranyXxX|¬xRyranyXxX|¬yRxtopGenfiXranyXxX|¬xRyranyXxX|¬yRx
16 14 15 ax-mp fiXranyXxX|¬xRyranyXxX|¬yRxtopGenfiXranyXxX|¬xRyranyXxX|¬yRx
17 13 16 sstrdi RVPXXranyXxX|¬xRyranyXxX|¬yRxtopGenfiXranyXxX|¬xRyranyXxX|¬yRx
18 1 2 3 ordtval RVordTopR=topGenfiXranyXxX|¬xRyranyXxX|¬yRx
19 18 adantr RVPXordTopR=topGenfiXranyXxX|¬xRyranyXxX|¬yRx
20 17 19 sseqtrrd RVPXXranyXxX|¬xRyranyXxX|¬yRxordTopR
21 ssun2 ranyXxX|¬xRyranyXxX|¬yRxXranyXxX|¬xRyranyXxX|¬yRx
22 ssun2 ranyXxX|¬yRxranyXxX|¬xRyranyXxX|¬yRx
23 simpr RVPXPX
24 eqidd RVPXxX|¬PRx=xX|¬PRx
25 breq1 y=PyRxPRx
26 25 notbid y=P¬yRx¬PRx
27 26 rabbidv y=PxX|¬yRx=xX|¬PRx
28 27 rspceeqv PXxX|¬PRx=xX|¬PRxyXxX|¬PRx=xX|¬yRx
29 23 24 28 syl2anc RVPXyXxX|¬PRx=xX|¬yRx
30 rabexg XVxX|¬PRxV
31 eqid yXxX|¬yRx=yXxX|¬yRx
32 31 elrnmpt xX|¬PRxVxX|¬PRxranyXxX|¬yRxyXxX|¬PRx=xX|¬yRx
33 8 30 32 3syl RVPXxX|¬PRxranyXxX|¬yRxyXxX|¬PRx=xX|¬yRx
34 29 33 mpbird RVPXxX|¬PRxranyXxX|¬yRx
35 22 34 sselid RVPXxX|¬PRxranyXxX|¬xRyranyXxX|¬yRx
36 21 35 sselid RVPXxX|¬PRxXranyXxX|¬xRyranyXxX|¬yRx
37 20 36 sseldd RVPXxX|¬PRxordTopR