Metamath Proof Explorer


Theorem ordtt1

Description: The order topology is T_1 for any poset. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion ordtt1 RPosetRelordTopRFre

Proof

Step Hyp Ref Expression
1 ordttop RPosetRelordTopRTop
2 snssi xdomRxdomR
3 2 adantl RPosetRelxdomRxdomR
4 sseqin2 xdomRdomRx=x
5 3 4 sylib RPosetRelxdomRdomRx=x
6 velsn yxy=x
7 eqid domR=domR
8 7 psref RPosetRelxdomRxRx
9 8 adantr RPosetRelxdomRydomRxRx
10 9 9 jca RPosetRelxdomRydomRxRxxRx
11 breq2 y=xxRyxRx
12 breq1 y=xyRxxRx
13 11 12 anbi12d y=xxRyyRxxRxxRx
14 10 13 syl5ibrcom RPosetRelxdomRydomRy=xxRyyRx
15 psasym RPosetRelxRyyRxx=y
16 15 equcomd RPosetRelxRyyRxy=x
17 16 3expib RPosetRelxRyyRxy=x
18 17 ad2antrr RPosetRelxdomRydomRxRyyRxy=x
19 14 18 impbid RPosetRelxdomRydomRy=xxRyyRx
20 6 19 bitrid RPosetRelxdomRydomRyxxRyyRx
21 20 rabbi2dva RPosetRelxdomRdomRx=ydomR|xRyyRx
22 5 21 eqtr3d RPosetRelxdomRx=ydomR|xRyyRx
23 7 ordtcld3 RPosetRelxdomRxdomRydomR|xRyyRxClsdordTopR
24 23 3anidm23 RPosetRelxdomRydomR|xRyyRxClsdordTopR
25 22 24 eqeltrd RPosetRelxdomRxClsdordTopR
26 25 ralrimiva RPosetRelxdomRxClsdordTopR
27 7 ordttopon RPosetRelordTopRTopOndomR
28 toponuni ordTopRTopOndomRdomR=ordTopR
29 27 28 syl RPosetReldomR=ordTopR
30 29 raleqdv RPosetRelxdomRxClsdordTopRxordTopRxClsdordTopR
31 26 30 mpbid RPosetRelxordTopRxClsdordTopR
32 eqid ordTopR=ordTopR
33 32 ist1 ordTopRFreordTopRTopxordTopRxClsdordTopR
34 1 31 33 sylanbrc RPosetRelordTopRFre