Description: The order topology is T_1 for any poset. (Contributed by Mario Carneiro, 3-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | ordtt1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordttop | |
|
2 | snssi | |
|
3 | 2 | adantl | |
4 | sseqin2 | |
|
5 | 3 4 | sylib | |
6 | velsn | |
|
7 | eqid | |
|
8 | 7 | psref | |
9 | 8 | adantr | |
10 | 9 9 | jca | |
11 | breq2 | |
|
12 | breq1 | |
|
13 | 11 12 | anbi12d | |
14 | 10 13 | syl5ibrcom | |
15 | psasym | |
|
16 | 15 | equcomd | |
17 | 16 | 3expib | |
18 | 17 | ad2antrr | |
19 | 14 18 | impbid | |
20 | 6 19 | bitrid | |
21 | 20 | rabbi2dva | |
22 | 5 21 | eqtr3d | |
23 | 7 | ordtcld3 | |
24 | 23 | 3anidm23 | |
25 | 22 24 | eqeltrd | |
26 | 25 | ralrimiva | |
27 | 7 | ordttopon | |
28 | toponuni | |
|
29 | 27 28 | syl | |
30 | 29 | raleqdv | |
31 | 26 30 | mpbid | |
32 | eqid | |
|
33 | 32 | ist1 | |
34 | 1 31 33 | sylanbrc | |