Metamath Proof Explorer


Theorem pcohtpy

Description: Homotopy invariance of path concatenation. (Contributed by Jeff Madsen, 15-Jun-2010) (Revised by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypotheses pcohtpy.4 φF1=G0
pcohtpy.5 φFphJH
pcohtpy.6 φGphJK
Assertion pcohtpy φF*𝑝JGphJH*𝑝JK

Proof

Step Hyp Ref Expression
1 pcohtpy.4 φF1=G0
2 pcohtpy.5 φFphJH
3 pcohtpy.6 φGphJK
4 isphtpc FphJHFIICnJHIICnJFPHtpyJH
5 2 4 sylib φFIICnJHIICnJFPHtpyJH
6 5 simp1d φFIICnJ
7 isphtpc GphJKGIICnJKIICnJGPHtpyJK
8 3 7 sylib φGIICnJKIICnJGPHtpyJK
9 8 simp1d φGIICnJ
10 6 9 1 pcocn φF*𝑝JGIICnJ
11 5 simp2d φHIICnJ
12 8 simp2d φKIICnJ
13 phtpc01 FphJHF0=H0F1=H1
14 2 13 syl φF0=H0F1=H1
15 14 simprd φF1=H1
16 phtpc01 GphJKG0=K0G1=K1
17 3 16 syl φG0=K0G1=K1
18 17 simpld φG0=K0
19 1 15 18 3eqtr3d φH1=K0
20 11 12 19 pcocn φH*𝑝JKIICnJ
21 5 simp3d φFPHtpyJH
22 n0 FPHtpyJHmmFPHtpyJH
23 21 22 sylib φmmFPHtpyJH
24 8 simp3d φGPHtpyJK
25 n0 GPHtpyJKnnGPHtpyJK
26 24 25 sylib φnnGPHtpyJK
27 exdistrv mnmFPHtpyJHnGPHtpyJKmmFPHtpyJHnnGPHtpyJK
28 23 26 27 sylanbrc φmnmFPHtpyJHnGPHtpyJK
29 1 adantr φmFPHtpyJHnGPHtpyJKF1=G0
30 2 adantr φmFPHtpyJHnGPHtpyJKFphJH
31 3 adantr φmFPHtpyJHnGPHtpyJKGphJK
32 eqid x01,y01ifx122xmy2x1ny=x01,y01ifx122xmy2x1ny
33 simprl φmFPHtpyJHnGPHtpyJKmFPHtpyJH
34 simprr φmFPHtpyJHnGPHtpyJKnGPHtpyJK
35 29 30 31 32 33 34 pcohtpylem φmFPHtpyJHnGPHtpyJKx01,y01ifx122xmy2x1nyF*𝑝JGPHtpyJH*𝑝JK
36 35 ne0d φmFPHtpyJHnGPHtpyJKF*𝑝JGPHtpyJH*𝑝JK
37 36 ex φmFPHtpyJHnGPHtpyJKF*𝑝JGPHtpyJH*𝑝JK
38 37 exlimdvv φmnmFPHtpyJHnGPHtpyJKF*𝑝JGPHtpyJH*𝑝JK
39 28 38 mpd φF*𝑝JGPHtpyJH*𝑝JK
40 isphtpc F*𝑝JGphJH*𝑝JKF*𝑝JGIICnJH*𝑝JKIICnJF*𝑝JGPHtpyJH*𝑝JK
41 10 20 39 40 syl3anbrc φF*𝑝JGphJH*𝑝JK