Description: Homotopy invariance of path concatenation. (Contributed by Jeff Madsen, 15-Jun-2010) (Revised by Mario Carneiro, 24-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pcohtpy.4 | |
|
pcohtpy.5 | |
||
pcohtpy.6 | |
||
Assertion | pcohtpy | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pcohtpy.4 | |
|
2 | pcohtpy.5 | |
|
3 | pcohtpy.6 | |
|
4 | isphtpc | |
|
5 | 2 4 | sylib | |
6 | 5 | simp1d | |
7 | isphtpc | |
|
8 | 3 7 | sylib | |
9 | 8 | simp1d | |
10 | 6 9 1 | pcocn | |
11 | 5 | simp2d | |
12 | 8 | simp2d | |
13 | phtpc01 | |
|
14 | 2 13 | syl | |
15 | 14 | simprd | |
16 | phtpc01 | |
|
17 | 3 16 | syl | |
18 | 17 | simpld | |
19 | 1 15 18 | 3eqtr3d | |
20 | 11 12 19 | pcocn | |
21 | 5 | simp3d | |
22 | n0 | |
|
23 | 21 22 | sylib | |
24 | 8 | simp3d | |
25 | n0 | |
|
26 | 24 25 | sylib | |
27 | exdistrv | |
|
28 | 23 26 27 | sylanbrc | |
29 | 1 | adantr | |
30 | 2 | adantr | |
31 | 3 | adantr | |
32 | eqid | |
|
33 | simprl | |
|
34 | simprr | |
|
35 | 29 30 31 32 33 34 | pcohtpylem | |
36 | 35 | ne0d | |
37 | 36 | ex | |
38 | 37 | exlimdvv | |
39 | 28 38 | mpd | |
40 | isphtpc | |
|
41 | 10 20 39 40 | syl3anbrc | |