| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pcohtpy.4 |
|
| 2 |
|
pcohtpy.5 |
|
| 3 |
|
pcohtpy.6 |
|
| 4 |
|
isphtpc |
|
| 5 |
2 4
|
sylib |
|
| 6 |
5
|
simp1d |
|
| 7 |
|
isphtpc |
|
| 8 |
3 7
|
sylib |
|
| 9 |
8
|
simp1d |
|
| 10 |
6 9 1
|
pcocn |
|
| 11 |
5
|
simp2d |
|
| 12 |
8
|
simp2d |
|
| 13 |
|
phtpc01 |
|
| 14 |
2 13
|
syl |
|
| 15 |
14
|
simprd |
|
| 16 |
|
phtpc01 |
|
| 17 |
3 16
|
syl |
|
| 18 |
17
|
simpld |
|
| 19 |
1 15 18
|
3eqtr3d |
|
| 20 |
11 12 19
|
pcocn |
|
| 21 |
5
|
simp3d |
|
| 22 |
|
n0 |
|
| 23 |
21 22
|
sylib |
|
| 24 |
8
|
simp3d |
|
| 25 |
|
n0 |
|
| 26 |
24 25
|
sylib |
|
| 27 |
|
exdistrv |
|
| 28 |
23 26 27
|
sylanbrc |
|
| 29 |
1
|
adantr |
|
| 30 |
2
|
adantr |
|
| 31 |
3
|
adantr |
|
| 32 |
|
eqid |
|
| 33 |
|
simprl |
|
| 34 |
|
simprr |
|
| 35 |
29 30 31 32 33 34
|
pcohtpylem |
|
| 36 |
35
|
ne0d |
|
| 37 |
36
|
ex |
|
| 38 |
37
|
exlimdvv |
|
| 39 |
28 38
|
mpd |
|
| 40 |
|
isphtpc |
|
| 41 |
10 20 39 40
|
syl3anbrc |
|