Metamath Proof Explorer


Theorem pfx2

Description: A prefix of length two. (Contributed by AV, 15-May-2020)

Ref Expression
Assertion pfx2 WWordV2WWprefix2=⟨“W0W1”⟩

Proof

Step Hyp Ref Expression
1 2nn0 20
2 1 a1i WWordV2W20
3 lencl WWordVW0
4 3 adantr WWordV2WW0
5 simpr WWordV2W2W
6 elfz2nn0 20W20W02W
7 2 4 5 6 syl3anbrc WWordV2W20W
8 pfxlen WWordV20WWprefix2=2
9 s2len ⟨“W0W1”⟩=2
10 9 eqcomi 2=⟨“W0W1”⟩
11 10 a1i WWordV20WWprefix2=22=⟨“W0W1”⟩
12 2nn 2
13 lbfzo0 00..^22
14 12 13 mpbir 00..^2
15 pfxfv WWordV20W00..^2Wprefix20=W0
16 14 15 mp3an3 WWordV20WWprefix20=W0
17 16 adantr WWordV20WWprefix2=2Wprefix20=W0
18 fvex W0V
19 s2fv0 W0V⟨“W0W1”⟩0=W0
20 18 19 ax-mp ⟨“W0W1”⟩0=W0
21 17 20 eqtr4di WWordV20WWprefix2=2Wprefix20=⟨“W0W1”⟩0
22 1nn0 10
23 1lt2 1<2
24 elfzo0 10..^21021<2
25 22 12 23 24 mpbir3an 10..^2
26 pfxfv WWordV20W10..^2Wprefix21=W1
27 25 26 mp3an3 WWordV20WWprefix21=W1
28 fvex W1V
29 s2fv1 W1V⟨“W0W1”⟩1=W1
30 28 29 ax-mp ⟨“W0W1”⟩1=W1
31 27 30 eqtr4di WWordV20WWprefix21=⟨“W0W1”⟩1
32 31 adantr WWordV20WWprefix2=2Wprefix21=⟨“W0W1”⟩1
33 0nn0 00
34 fveq2 i=0Wprefix2i=Wprefix20
35 fveq2 i=0⟨“W0W1”⟩i=⟨“W0W1”⟩0
36 34 35 eqeq12d i=0Wprefix2i=⟨“W0W1”⟩iWprefix20=⟨“W0W1”⟩0
37 fveq2 i=1Wprefix2i=Wprefix21
38 fveq2 i=1⟨“W0W1”⟩i=⟨“W0W1”⟩1
39 37 38 eqeq12d i=1Wprefix2i=⟨“W0W1”⟩iWprefix21=⟨“W0W1”⟩1
40 36 39 ralprg 0010i01Wprefix2i=⟨“W0W1”⟩iWprefix20=⟨“W0W1”⟩0Wprefix21=⟨“W0W1”⟩1
41 33 22 40 mp2an i01Wprefix2i=⟨“W0W1”⟩iWprefix20=⟨“W0W1”⟩0Wprefix21=⟨“W0W1”⟩1
42 21 32 41 sylanbrc WWordV20WWprefix2=2i01Wprefix2i=⟨“W0W1”⟩i
43 eqeq1 Wprefix2=2Wprefix2=⟨“W0W1”⟩2=⟨“W0W1”⟩
44 oveq2 Wprefix2=20..^Wprefix2=0..^2
45 fzo0to2pr 0..^2=01
46 44 45 eqtrdi Wprefix2=20..^Wprefix2=01
47 46 raleqdv Wprefix2=2i0..^Wprefix2Wprefix2i=⟨“W0W1”⟩ii01Wprefix2i=⟨“W0W1”⟩i
48 43 47 anbi12d Wprefix2=2Wprefix2=⟨“W0W1”⟩i0..^Wprefix2Wprefix2i=⟨“W0W1”⟩i2=⟨“W0W1”⟩i01Wprefix2i=⟨“W0W1”⟩i
49 48 adantl WWordV20WWprefix2=2Wprefix2=⟨“W0W1”⟩i0..^Wprefix2Wprefix2i=⟨“W0W1”⟩i2=⟨“W0W1”⟩i01Wprefix2i=⟨“W0W1”⟩i
50 11 42 49 mpbir2and WWordV20WWprefix2=2Wprefix2=⟨“W0W1”⟩i0..^Wprefix2Wprefix2i=⟨“W0W1”⟩i
51 8 50 mpdan WWordV20WWprefix2=⟨“W0W1”⟩i0..^Wprefix2Wprefix2i=⟨“W0W1”⟩i
52 pfxcl WWordVWprefix2WordV
53 s2cli ⟨“W0W1”⟩WordV
54 eqwrd Wprefix2WordV⟨“W0W1”⟩WordVWprefix2=⟨“W0W1”⟩Wprefix2=⟨“W0W1”⟩i0..^Wprefix2Wprefix2i=⟨“W0W1”⟩i
55 52 53 54 sylancl WWordVWprefix2=⟨“W0W1”⟩Wprefix2=⟨“W0W1”⟩i0..^Wprefix2Wprefix2i=⟨“W0W1”⟩i
56 55 adantr WWordV20WWprefix2=⟨“W0W1”⟩Wprefix2=⟨“W0W1”⟩i0..^Wprefix2Wprefix2i=⟨“W0W1”⟩i
57 51 56 mpbird WWordV20WWprefix2=⟨“W0W1”⟩
58 7 57 syldan WWordV2WWprefix2=⟨“W0W1”⟩