Metamath Proof Explorer


Theorem pimiooltgt

Description: The preimage of an open interval is the intersection of the preimage of an unbounded below open interval and an unbounded above open interval. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses pimiooltgt.1 xφ
pimiooltgt.2 φL*
pimiooltgt.3 φR*
pimiooltgt.4 φxAB*
Assertion pimiooltgt φxA|BLR=xA|B<RxA|L<B

Proof

Step Hyp Ref Expression
1 pimiooltgt.1 xφ
2 pimiooltgt.2 φL*
3 pimiooltgt.3 φR*
4 pimiooltgt.4 φxAB*
5 2 adantr φxAL*
6 5 3adant3 φxABLRL*
7 3 adantr φxAR*
8 7 3adant3 φxABLRR*
9 simp3 φxABLRBLR
10 iooltub L*R*BLRB<R
11 6 8 9 10 syl3anc φxABLRB<R
12 11 3exp φxABLRB<R
13 1 12 ralrimi φxABLRB<R
14 ss2rab xA|BLRxA|B<RxABLRB<R
15 13 14 sylibr φxA|BLRxA|B<R
16 ioogtlb L*R*BLRL<B
17 6 8 9 16 syl3anc φxABLRL<B
18 17 3exp φxABLRL<B
19 1 18 ralrimi φxABLRL<B
20 ss2rab xA|BLRxA|L<BxABLRL<B
21 19 20 sylibr φxA|BLRxA|L<B
22 15 21 ssind φxA|BLRxA|B<RxA|L<B
23 elinel1 xxA|B<RxA|L<BxxA|B<R
24 ssrab2 xA|B<RA
25 24 sseli xxA|B<RxA
26 23 25 syl xxA|B<RxA|L<BxA
27 26 adantl φxxA|B<RxA|L<BxA
28 27 5 syldan φxxA|B<RxA|L<BL*
29 27 7 syldan φxxA|B<RxA|L<BR*
30 27 4 syldan φxxA|B<RxA|L<BB*
31 mnfxr −∞*
32 31 a1i φxxA|B<RxA|L<B−∞*
33 28 mnfled φxxA|B<RxA|L<B−∞L
34 elinel2 xxA|B<RxA|L<BxxA|L<B
35 rabidim2 xxA|L<BL<B
36 34 35 syl xxA|B<RxA|L<BL<B
37 36 adantl φxxA|B<RxA|L<BL<B
38 32 28 30 33 37 xrlelttrd φxxA|B<RxA|L<B−∞<B
39 32 30 38 xrltned φxxA|B<RxA|L<B−∞B
40 39 necomd φxxA|B<RxA|L<BB−∞
41 pnfxr +∞*
42 41 a1i φxxA|B<RxA|L<B+∞*
43 rabidim2 xxA|B<RB<R
44 23 43 syl xxA|B<RxA|L<BB<R
45 44 adantl φxxA|B<RxA|L<BB<R
46 pnfge R*R+∞
47 29 46 syl φxxA|B<RxA|L<BR+∞
48 30 29 42 45 47 xrltletrd φxxA|B<RxA|L<BB<+∞
49 30 42 48 xrltned φxxA|B<RxA|L<BB+∞
50 30 40 49 xrred φxxA|B<RxA|L<BB
51 28 29 50 37 45 eliood φxxA|B<RxA|L<BBLR
52 27 51 jca φxxA|B<RxA|L<BxABLR
53 rabid xxA|BLRxABLR
54 52 53 sylibr φxxA|B<RxA|L<BxxA|BLR
55 54 ex φxxA|B<RxA|L<BxxA|BLR
56 1 55 ralrimi φxxA|B<RxA|L<BxxA|BLR
57 nfrab1 _xxA|B<R
58 nfrab1 _xxA|L<B
59 57 58 nfin _xxA|B<RxA|L<B
60 nfrab1 _xxA|BLR
61 59 60 dfss3f xA|B<RxA|L<BxA|BLRxxA|B<RxA|L<BxxA|BLR
62 56 61 sylibr φxA|B<RxA|L<BxA|BLR
63 22 62 eqssd φxA|BLR=xA|B<RxA|L<B