Description: The preimage of an open interval is the intersection of the preimage of an unbounded below open interval and an unbounded above open interval. (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pimiooltgt.1 | |
|
pimiooltgt.2 | |
||
pimiooltgt.3 | |
||
pimiooltgt.4 | |
||
Assertion | pimiooltgt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pimiooltgt.1 | |
|
2 | pimiooltgt.2 | |
|
3 | pimiooltgt.3 | |
|
4 | pimiooltgt.4 | |
|
5 | 2 | adantr | |
6 | 5 | 3adant3 | |
7 | 3 | adantr | |
8 | 7 | 3adant3 | |
9 | simp3 | |
|
10 | iooltub | |
|
11 | 6 8 9 10 | syl3anc | |
12 | 11 | 3exp | |
13 | 1 12 | ralrimi | |
14 | ss2rab | |
|
15 | 13 14 | sylibr | |
16 | ioogtlb | |
|
17 | 6 8 9 16 | syl3anc | |
18 | 17 | 3exp | |
19 | 1 18 | ralrimi | |
20 | ss2rab | |
|
21 | 19 20 | sylibr | |
22 | 15 21 | ssind | |
23 | elinel1 | |
|
24 | ssrab2 | |
|
25 | 24 | sseli | |
26 | 23 25 | syl | |
27 | 26 | adantl | |
28 | 27 5 | syldan | |
29 | 27 7 | syldan | |
30 | 27 4 | syldan | |
31 | mnfxr | |
|
32 | 31 | a1i | |
33 | 28 | mnfled | |
34 | elinel2 | |
|
35 | rabidim2 | |
|
36 | 34 35 | syl | |
37 | 36 | adantl | |
38 | 32 28 30 33 37 | xrlelttrd | |
39 | 32 30 38 | xrltned | |
40 | 39 | necomd | |
41 | pnfxr | |
|
42 | 41 | a1i | |
43 | rabidim2 | |
|
44 | 23 43 | syl | |
45 | 44 | adantl | |
46 | pnfge | |
|
47 | 29 46 | syl | |
48 | 30 29 42 45 47 | xrltletrd | |
49 | 30 42 48 | xrltned | |
50 | 30 40 49 | xrred | |
51 | 28 29 50 37 45 | eliood | |
52 | 27 51 | jca | |
53 | rabid | |
|
54 | 52 53 | sylibr | |
55 | 54 | ex | |
56 | 1 55 | ralrimi | |
57 | nfrab1 | |
|
58 | nfrab1 | |
|
59 | 57 58 | nfin | |
60 | nfrab1 | |
|
61 | 59 60 | dfss3f | |
62 | 56 61 | sylibr | |
63 | 22 62 | eqssd | |