Metamath Proof Explorer


Theorem pjdm2

Description: A subspace is in the domain of the projection function iff the subspace admits a projection decomposition of the whole space. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses pjdm2.v V=BaseW
pjdm2.l L=LSubSpW
pjdm2.o ˙=ocvW
pjdm2.s ˙=LSSumW
pjdm2.k K=projW
Assertion pjdm2 WPreHilTdomKTLT˙˙T=V

Proof

Step Hyp Ref Expression
1 pjdm2.v V=BaseW
2 pjdm2.l L=LSubSpW
3 pjdm2.o ˙=ocvW
4 pjdm2.s ˙=LSSumW
5 pjdm2.k K=projW
6 eqid proj1W=proj1W
7 1 2 3 6 5 pjdm TdomKTLTproj1W˙T:VV
8 eqid +W=+W
9 eqid 0W=0W
10 eqid CntzW=CntzW
11 phllmod WPreHilWLMod
12 11 adantr WPreHilTLWLMod
13 2 lsssssubg WLModLSubGrpW
14 12 13 syl WPreHilTLLSubGrpW
15 simpr WPreHilTLTL
16 14 15 sseldd WPreHilTLTSubGrpW
17 1 2 lssss TLTV
18 1 3 2 ocvlss WPreHilTV˙TL
19 17 18 sylan2 WPreHilTL˙TL
20 14 19 sseldd WPreHilTL˙TSubGrpW
21 3 2 9 ocvin WPreHilTLT˙T=0W
22 lmodabl WLModWAbel
23 12 22 syl WPreHilTLWAbel
24 10 23 16 20 ablcntzd WPreHilTLTCntzW˙T
25 8 4 9 10 16 20 21 24 6 pj1f WPreHilTLTproj1W˙T:T˙˙TT
26 17 adantl WPreHilTLTV
27 25 26 fssd WPreHilTLTproj1W˙T:T˙˙TV
28 fdm Tproj1W˙T:T˙˙TVdomTproj1W˙T=T˙˙T
29 28 eqcomd Tproj1W˙T:T˙˙TVT˙˙T=domTproj1W˙T
30 fdm Tproj1W˙T:VVdomTproj1W˙T=V
31 30 eqeq2d Tproj1W˙T:VVT˙˙T=domTproj1W˙TT˙˙T=V
32 29 31 syl5ibcom Tproj1W˙T:T˙˙TVTproj1W˙T:VVT˙˙T=V
33 feq2 T˙˙T=VTproj1W˙T:T˙˙TVTproj1W˙T:VV
34 33 biimpcd Tproj1W˙T:T˙˙TVT˙˙T=VTproj1W˙T:VV
35 32 34 impbid Tproj1W˙T:T˙˙TVTproj1W˙T:VVT˙˙T=V
36 27 35 syl WPreHilTLTproj1W˙T:VVT˙˙T=V
37 36 pm5.32da WPreHilTLTproj1W˙T:VVTLT˙˙T=V
38 7 37 bitrid WPreHilTdomKTLT˙˙T=V