Description: A subspace is in the domain of the projection function iff the subspace admits a projection decomposition of the whole space. (Contributed by Mario Carneiro, 16-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pjdm2.v | |
|
pjdm2.l | |
||
pjdm2.o | |
||
pjdm2.s | |
||
pjdm2.k | |
||
Assertion | pjdm2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjdm2.v | |
|
2 | pjdm2.l | |
|
3 | pjdm2.o | |
|
4 | pjdm2.s | |
|
5 | pjdm2.k | |
|
6 | eqid | |
|
7 | 1 2 3 6 5 | pjdm | |
8 | eqid | |
|
9 | eqid | |
|
10 | eqid | |
|
11 | phllmod | |
|
12 | 11 | adantr | |
13 | 2 | lsssssubg | |
14 | 12 13 | syl | |
15 | simpr | |
|
16 | 14 15 | sseldd | |
17 | 1 2 | lssss | |
18 | 1 3 2 | ocvlss | |
19 | 17 18 | sylan2 | |
20 | 14 19 | sseldd | |
21 | 3 2 9 | ocvin | |
22 | lmodabl | |
|
23 | 12 22 | syl | |
24 | 10 23 16 20 | ablcntzd | |
25 | 8 4 9 10 16 20 21 24 6 | pj1f | |
26 | 17 | adantl | |
27 | 25 26 | fssd | |
28 | fdm | |
|
29 | 28 | eqcomd | |
30 | fdm | |
|
31 | 30 | eqeq2d | |
32 | 29 31 | syl5ibcom | |
33 | feq2 | |
|
34 | 33 | biimpcd | |
35 | 32 34 | impbid | |
36 | 27 35 | syl | |
37 | 36 | pm5.32da | |
38 | 7 37 | bitrid | |