Metamath Proof Explorer


Theorem pjhthlem2

Description: Lemma for pjhth . (Contributed by NM, 10-Oct-1999) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses pjhth.1 HC
pjhth.2 φA
Assertion pjhthlem2 φxHyHA=x+y

Proof

Step Hyp Ref Expression
1 pjhth.1 HC
2 pjhth.2 φA
3 2 adantr φxHzHnormA-xnormA-zA
4 1 cheli xHx
5 4 ad2antrl φxHzHnormA-xnormA-zx
6 hvsubcl AxA-x
7 3 5 6 syl2anc φxHzHnormA-xnormA-zA-x
8 3 adantr φxHzHnormA-xnormA-zyHA
9 simplrl φxHzHnormA-xnormA-zyHxH
10 simpr φxHzHnormA-xnormA-zyHyH
11 simplrr φxHzHnormA-xnormA-zyHzHnormA-xnormA-z
12 eqid A-xihyyihy+1=A-xihyyihy+1
13 1 8 9 10 11 12 pjhthlem1 φxHzHnormA-xnormA-zyHA-xihy=0
14 13 ralrimiva φxHzHnormA-xnormA-zyHA-xihy=0
15 1 chshii HS
16 shocel HSA-xHA-xyHA-xihy=0
17 15 16 ax-mp A-xHA-xyHA-xihy=0
18 7 14 17 sylanbrc φxHzHnormA-xnormA-zA-xH
19 hvpncan3 xAx+A-x=A
20 5 3 19 syl2anc φxHzHnormA-xnormA-zx+A-x=A
21 20 eqcomd φxHzHnormA-xnormA-zA=x+A-x
22 oveq2 y=A-xx+y=x+A-x
23 22 rspceeqv A-xHA=x+A-xyHA=x+y
24 18 21 23 syl2anc φxHzHnormA-xnormA-zyHA=x+y
25 df-hba =BaseSet+norm
26 eqid +norm=+norm
27 26 hhvs -=-v+norm
28 26 hhnm norm=normCV+norm
29 eqid +H×H×HnormH=+H×H×HnormH
30 29 15 hhssba H=BaseSet+H×H×HnormH
31 26 hhph +normCPreHilOLD
32 31 a1i φ+normCPreHilOLD
33 26 29 hhsst HS+H×H×HnormHSubSp+norm
34 15 33 ax-mp +H×H×HnormHSubSp+norm
35 29 1 hhssbnOLD +H×H×HnormHCBan
36 elin +H×H×HnormHSubSp+normCBan+H×H×HnormHSubSp+norm+H×H×HnormHCBan
37 34 35 36 mpbir2an +H×H×HnormHSubSp+normCBan
38 37 a1i φ+H×H×HnormHSubSp+normCBan
39 25 27 28 30 32 38 2 minveco φ∃!xHzHnormA-xnormA-z
40 reurex ∃!xHzHnormA-xnormA-zxHzHnormA-xnormA-z
41 39 40 syl φxHzHnormA-xnormA-z
42 24 41 reximddv φxHyHA=x+y