Description: Lemma for pjhth . (Contributed by NM, 10-Oct-1999) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pjhth.1 | |
|
pjhth.2 | |
||
Assertion | pjhthlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjhth.1 | |
|
2 | pjhth.2 | |
|
3 | 2 | adantr | |
4 | 1 | cheli | |
5 | 4 | ad2antrl | |
6 | hvsubcl | |
|
7 | 3 5 6 | syl2anc | |
8 | 3 | adantr | |
9 | simplrl | |
|
10 | simpr | |
|
11 | simplrr | |
|
12 | eqid | |
|
13 | 1 8 9 10 11 12 | pjhthlem1 | |
14 | 13 | ralrimiva | |
15 | 1 | chshii | |
16 | shocel | |
|
17 | 15 16 | ax-mp | |
18 | 7 14 17 | sylanbrc | |
19 | hvpncan3 | |
|
20 | 5 3 19 | syl2anc | |
21 | 20 | eqcomd | |
22 | oveq2 | |
|
23 | 22 | rspceeqv | |
24 | 18 21 23 | syl2anc | |
25 | df-hba | |
|
26 | eqid | |
|
27 | 26 | hhvs | |
28 | 26 | hhnm | |
29 | eqid | |
|
30 | 29 15 | hhssba | |
31 | 26 | hhph | |
32 | 31 | a1i | |
33 | 26 29 | hhsst | |
34 | 15 33 | ax-mp | |
35 | 29 1 | hhssbnOLD | |
36 | elin | |
|
37 | 34 35 36 | mpbir2an | |
38 | 37 | a1i | |
39 | 25 27 28 30 32 38 2 | minveco | |
40 | reurex | |
|
41 | 39 40 | syl | |
42 | 24 41 | reximddv | |