Metamath Proof Explorer


Theorem ply1nzb

Description: Univariate polynomials are nonzero iff the base is nonzero. Or in contraposition, the univariate polynomials over the zero ring are also zero. (Contributed by Mario Carneiro, 13-Jun-2015)

Ref Expression
Hypothesis ply1domn.p P=Poly1R
Assertion ply1nzb RRingRNzRingPNzRing

Proof

Step Hyp Ref Expression
1 ply1domn.p P=Poly1R
2 1 ply1nz RNzRingPNzRing
3 simpl RRingPNzRingRRing
4 eqid 1P=1P
5 eqid 0P=0P
6 4 5 nzrnz PNzRing1P0P
7 6 adantl RRingPNzRing1P0P
8 ifeq1 1R=0Rify=1𝑜×01R0R=ify=1𝑜×00R0R
9 ifid ify=1𝑜×00R0R=0R
10 8 9 eqtrdi 1R=0Rify=1𝑜×01R0R=0R
11 10 ralrimivw 1R=0Ryx01𝑜|x-1Finify=1𝑜×01R0R=0R
12 eqid 1𝑜mPolyR=1𝑜mPolyR
13 eqid x01𝑜|x-1Fin=x01𝑜|x-1Fin
14 eqid 0R=0R
15 eqid 1R=1R
16 12 1 4 ply1mpl1 1P=11𝑜mPolyR
17 1on 1𝑜On
18 17 a1i RRingPNzRing1𝑜On
19 12 13 14 15 16 18 3 mpl1 RRingPNzRing1P=yx01𝑜|x-1Finify=1𝑜×01R0R
20 12 1 5 ply1mpl0 0P=01𝑜mPolyR
21 ringgrp RRingRGrp
22 3 21 syl RRingPNzRingRGrp
23 12 13 14 20 18 22 mpl0 RRingPNzRing0P=x01𝑜|x-1Fin×0R
24 fconstmpt x01𝑜|x-1Fin×0R=yx01𝑜|x-1Fin0R
25 23 24 eqtrdi RRingPNzRing0P=yx01𝑜|x-1Fin0R
26 19 25 eqeq12d RRingPNzRing1P=0Pyx01𝑜|x-1Finify=1𝑜×01R0R=yx01𝑜|x-1Fin0R
27 fvex 1RV
28 fvex 0RV
29 27 28 ifex ify=1𝑜×01R0RV
30 29 rgenw yx01𝑜|x-1Finify=1𝑜×01R0RV
31 mpteqb yx01𝑜|x-1Finify=1𝑜×01R0RVyx01𝑜|x-1Finify=1𝑜×01R0R=yx01𝑜|x-1Fin0Ryx01𝑜|x-1Finify=1𝑜×01R0R=0R
32 30 31 ax-mp yx01𝑜|x-1Finify=1𝑜×01R0R=yx01𝑜|x-1Fin0Ryx01𝑜|x-1Finify=1𝑜×01R0R=0R
33 26 32 bitrdi RRingPNzRing1P=0Pyx01𝑜|x-1Finify=1𝑜×01R0R=0R
34 11 33 imbitrrid RRingPNzRing1R=0R1P=0P
35 34 necon3d RRingPNzRing1P0P1R0R
36 7 35 mpd RRingPNzRing1R0R
37 15 14 isnzr RNzRingRRing1R0R
38 3 36 37 sylanbrc RRingPNzRingRNzRing
39 38 ex RRingPNzRingRNzRing
40 2 39 impbid2 RRingRNzRingPNzRing