| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1domn.p |
|
| 2 |
1
|
ply1nz |
|
| 3 |
|
simpl |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
4 5
|
nzrnz |
|
| 7 |
6
|
adantl |
|
| 8 |
|
ifeq1 |
|
| 9 |
|
ifid |
|
| 10 |
8 9
|
eqtrdi |
|
| 11 |
10
|
ralrimivw |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
|
eqid |
|
| 16 |
12 1 4
|
ply1mpl1 |
|
| 17 |
|
1on |
|
| 18 |
17
|
a1i |
|
| 19 |
12 13 14 15 16 18 3
|
mpl1 |
|
| 20 |
12 1 5
|
ply1mpl0 |
|
| 21 |
|
ringgrp |
|
| 22 |
3 21
|
syl |
|
| 23 |
12 13 14 20 18 22
|
mpl0 |
|
| 24 |
|
fconstmpt |
|
| 25 |
23 24
|
eqtrdi |
|
| 26 |
19 25
|
eqeq12d |
|
| 27 |
|
fvex |
|
| 28 |
|
fvex |
|
| 29 |
27 28
|
ifex |
|
| 30 |
29
|
rgenw |
|
| 31 |
|
mpteqb |
|
| 32 |
30 31
|
ax-mp |
|
| 33 |
26 32
|
bitrdi |
|
| 34 |
11 33
|
imbitrrid |
|
| 35 |
34
|
necon3d |
|
| 36 |
7 35
|
mpd |
|
| 37 |
15 14
|
isnzr |
|
| 38 |
3 36 37
|
sylanbrc |
|
| 39 |
38
|
ex |
|
| 40 |
2 39
|
impbid2 |
|