Metamath Proof Explorer


Theorem pm2mpval

Description: Value of the transformation of a polynomial matrix into a polynomial over matrices. (Contributed by AV, 5-Dec-2019)

Ref Expression
Hypotheses pm2mpval.p P=Poly1R
pm2mpval.c C=NMatP
pm2mpval.b B=BaseC
pm2mpval.m ˙=Q
pm2mpval.e ×˙=mulGrpQ
pm2mpval.x X=var1A
pm2mpval.a A=NMatR
pm2mpval.q Q=Poly1A
pm2mpval.t T=NpMatToMatPolyR
Assertion pm2mpval NFinRVT=mBQk0mdecompPMatk˙k×˙X

Proof

Step Hyp Ref Expression
1 pm2mpval.p P=Poly1R
2 pm2mpval.c C=NMatP
3 pm2mpval.b B=BaseC
4 pm2mpval.m ˙=Q
5 pm2mpval.e ×˙=mulGrpQ
6 pm2mpval.x X=var1A
7 pm2mpval.a A=NMatR
8 pm2mpval.q Q=Poly1A
9 pm2mpval.t T=NpMatToMatPolyR
10 df-pm2mp pMatToMatPoly=nFin,rVmBasenMatPoly1rnMatr/aPoly1a/qqk0mdecompPMatkqkmulGrpqvar1a
11 10 a1i NFinRVpMatToMatPoly=nFin,rVmBasenMatPoly1rnMatr/aPoly1a/qqk0mdecompPMatkqkmulGrpqvar1a
12 simpl n=Nr=Rn=N
13 fveq2 r=RPoly1r=Poly1R
14 13 adantl n=Nr=RPoly1r=Poly1R
15 12 14 oveq12d n=Nr=RnMatPoly1r=NMatPoly1R
16 15 fveq2d n=Nr=RBasenMatPoly1r=BaseNMatPoly1R
17 1 oveq2i NMatP=NMatPoly1R
18 2 17 eqtri C=NMatPoly1R
19 18 fveq2i BaseC=BaseNMatPoly1R
20 3 19 eqtri B=BaseNMatPoly1R
21 16 20 eqtr4di n=Nr=RBasenMatPoly1r=B
22 21 adantl NFinRVn=Nr=RBasenMatPoly1r=B
23 ovex nMatrV
24 fvexd a=nMatrPoly1aV
25 simpr a=nMatrq=Poly1aq=Poly1a
26 fveq2 a=nMatrPoly1a=Poly1nMatr
27 26 adantr a=nMatrq=Poly1aPoly1a=Poly1nMatr
28 25 27 eqtrd a=nMatrq=Poly1aq=Poly1nMatr
29 28 fveq2d a=nMatrq=Poly1aq=Poly1nMatr
30 eqidd a=nMatrq=Poly1amdecompPMatk=mdecompPMatk
31 28 fveq2d a=nMatrq=Poly1amulGrpq=mulGrpPoly1nMatr
32 31 fveq2d a=nMatrq=Poly1amulGrpq=mulGrpPoly1nMatr
33 eqidd a=nMatrq=Poly1ak=k
34 fveq2 a=nMatrvar1a=var1nMatr
35 34 adantr a=nMatrq=Poly1avar1a=var1nMatr
36 32 33 35 oveq123d a=nMatrq=Poly1akmulGrpqvar1a=kmulGrpPoly1nMatrvar1nMatr
37 29 30 36 oveq123d a=nMatrq=Poly1amdecompPMatkqkmulGrpqvar1a=mdecompPMatkPoly1nMatrkmulGrpPoly1nMatrvar1nMatr
38 37 mpteq2dv a=nMatrq=Poly1ak0mdecompPMatkqkmulGrpqvar1a=k0mdecompPMatkPoly1nMatrkmulGrpPoly1nMatrvar1nMatr
39 28 38 oveq12d a=nMatrq=Poly1aqk0mdecompPMatkqkmulGrpqvar1a=Poly1nMatrk0mdecompPMatkPoly1nMatrkmulGrpPoly1nMatrvar1nMatr
40 24 39 csbied a=nMatrPoly1a/qqk0mdecompPMatkqkmulGrpqvar1a=Poly1nMatrk0mdecompPMatkPoly1nMatrkmulGrpPoly1nMatrvar1nMatr
41 23 40 csbie nMatr/aPoly1a/qqk0mdecompPMatkqkmulGrpqvar1a=Poly1nMatrk0mdecompPMatkPoly1nMatrkmulGrpPoly1nMatrvar1nMatr
42 oveq12 n=Nr=RnMatr=NMatR
43 42 fveq2d n=Nr=RPoly1nMatr=Poly1NMatR
44 7 fveq2i Poly1A=Poly1NMatR
45 8 44 eqtri Q=Poly1NMatR
46 43 45 eqtr4di n=Nr=RPoly1nMatr=Q
47 43 fveq2d n=Nr=RPoly1nMatr=Poly1NMatR
48 45 fveq2i Q=Poly1NMatR
49 4 48 eqtri ˙=Poly1NMatR
50 47 49 eqtr4di n=Nr=RPoly1nMatr=˙
51 eqidd n=Nr=RmdecompPMatk=mdecompPMatk
52 43 fveq2d n=Nr=RmulGrpPoly1nMatr=mulGrpPoly1NMatR
53 52 fveq2d n=Nr=RmulGrpPoly1nMatr=mulGrpPoly1NMatR
54 45 fveq2i mulGrpQ=mulGrpPoly1NMatR
55 54 fveq2i mulGrpQ=mulGrpPoly1NMatR
56 5 55 eqtri ×˙=mulGrpPoly1NMatR
57 53 56 eqtr4di n=Nr=RmulGrpPoly1nMatr=×˙
58 eqidd n=Nr=Rk=k
59 42 fveq2d n=Nr=Rvar1nMatr=var1NMatR
60 7 fveq2i var1A=var1NMatR
61 6 60 eqtri X=var1NMatR
62 59 61 eqtr4di n=Nr=Rvar1nMatr=X
63 57 58 62 oveq123d n=Nr=RkmulGrpPoly1nMatrvar1nMatr=k×˙X
64 50 51 63 oveq123d n=Nr=RmdecompPMatkPoly1nMatrkmulGrpPoly1nMatrvar1nMatr=mdecompPMatk˙k×˙X
65 64 mpteq2dv n=Nr=Rk0mdecompPMatkPoly1nMatrkmulGrpPoly1nMatrvar1nMatr=k0mdecompPMatk˙k×˙X
66 46 65 oveq12d n=Nr=RPoly1nMatrk0mdecompPMatkPoly1nMatrkmulGrpPoly1nMatrvar1nMatr=Qk0mdecompPMatk˙k×˙X
67 66 adantl NFinRVn=Nr=RPoly1nMatrk0mdecompPMatkPoly1nMatrkmulGrpPoly1nMatrvar1nMatr=Qk0mdecompPMatk˙k×˙X
68 41 67 eqtrid NFinRVn=Nr=RnMatr/aPoly1a/qqk0mdecompPMatkqkmulGrpqvar1a=Qk0mdecompPMatk˙k×˙X
69 22 68 mpteq12dv NFinRVn=Nr=RmBasenMatPoly1rnMatr/aPoly1a/qqk0mdecompPMatkqkmulGrpqvar1a=mBQk0mdecompPMatk˙k×˙X
70 simpl NFinRVNFin
71 elex RVRV
72 71 adantl NFinRVRV
73 3 fvexi BV
74 73 mptex mBQk0mdecompPMatk˙k×˙XV
75 74 a1i NFinRVmBQk0mdecompPMatk˙k×˙XV
76 11 69 70 72 75 ovmpod NFinRVNpMatToMatPolyR=mBQk0mdecompPMatk˙k×˙X
77 9 76 eqtrid NFinRVT=mBQk0mdecompPMatk˙k×˙X