Metamath Proof Explorer


Theorem prmcyg

Description: A group with prime order is cyclic. (Contributed by Mario Carneiro, 27-Apr-2016)

Ref Expression
Hypothesis cygctb.1 B=BaseG
Assertion prmcyg GGrpBGCycGrp

Proof

Step Hyp Ref Expression
1 cygctb.1 B=BaseG
2 1nprm ¬1
3 simpr GGrpBB0GB0G
4 eqid 0G=0G
5 1 4 grpidcl GGrp0GB
6 5 snssd GGrp0GB
7 6 ad2antrr GGrpBB0G0GB
8 3 7 eqssd GGrpBB0GB=0G
9 8 fveq2d GGrpBB0GB=0G
10 fvex 0GV
11 hashsng 0GV0G=1
12 10 11 ax-mp 0G=1
13 9 12 eqtrdi GGrpBB0GB=1
14 simplr GGrpBB0GB
15 13 14 eqeltrrd GGrpBB0G1
16 15 ex GGrpBB0G1
17 2 16 mtoi GGrpB¬B0G
18 nss ¬B0GxxB¬x0G
19 17 18 sylib GGrpBxxB¬x0G
20 eqid odG=odG
21 simpll GGrpBxB¬x0GGGrp
22 simprl GGrpBxB¬x0GxB
23 simprr GGrpBxB¬x0G¬x0G
24 20 4 1 odeq1 GGrpxBodGx=1x=0G
25 21 22 24 syl2anc GGrpBxB¬x0GodGx=1x=0G
26 velsn x0Gx=0G
27 25 26 bitr4di GGrpBxB¬x0GodGx=1x0G
28 23 27 mtbird GGrpBxB¬x0G¬odGx=1
29 prmnn BB
30 29 ad2antlr GGrpBxB¬x0GB
31 30 nnnn0d GGrpBxB¬x0GB0
32 1 fvexi BV
33 hashclb BVBFinB0
34 32 33 ax-mp BFinB0
35 31 34 sylibr GGrpBxB¬x0GBFin
36 1 20 oddvds2 GGrpBFinxBodGxB
37 21 35 22 36 syl3anc GGrpBxB¬x0GodGxB
38 simplr GGrpBxB¬x0GB
39 1 20 odcl2 GGrpBFinxBodGx
40 21 35 22 39 syl3anc GGrpBxB¬x0GodGx
41 dvdsprime BodGxodGxBodGx=BodGx=1
42 38 40 41 syl2anc GGrpBxB¬x0GodGxBodGx=BodGx=1
43 37 42 mpbid GGrpBxB¬x0GodGx=BodGx=1
44 43 ord GGrpBxB¬x0G¬odGx=BodGx=1
45 28 44 mt3d GGrpBxB¬x0GodGx=B
46 1 20 21 22 45 iscygodd GGrpBxB¬x0GGCycGrp
47 19 46 exlimddv GGrpBGCycGrp