Description: A group with prime order is cyclic. (Contributed by Mario Carneiro, 27-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cygctb.1 | |
|
Assertion | prmcyg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cygctb.1 | |
|
2 | 1nprm | |
|
3 | simpr | |
|
4 | eqid | |
|
5 | 1 4 | grpidcl | |
6 | 5 | snssd | |
7 | 6 | ad2antrr | |
8 | 3 7 | eqssd | |
9 | 8 | fveq2d | |
10 | fvex | |
|
11 | hashsng | |
|
12 | 10 11 | ax-mp | |
13 | 9 12 | eqtrdi | |
14 | simplr | |
|
15 | 13 14 | eqeltrrd | |
16 | 15 | ex | |
17 | 2 16 | mtoi | |
18 | nss | |
|
19 | 17 18 | sylib | |
20 | eqid | |
|
21 | simpll | |
|
22 | simprl | |
|
23 | simprr | |
|
24 | 20 4 1 | odeq1 | |
25 | 21 22 24 | syl2anc | |
26 | velsn | |
|
27 | 25 26 | bitr4di | |
28 | 23 27 | mtbird | |
29 | prmnn | |
|
30 | 29 | ad2antlr | |
31 | 30 | nnnn0d | |
32 | 1 | fvexi | |
33 | hashclb | |
|
34 | 32 33 | ax-mp | |
35 | 31 34 | sylibr | |
36 | 1 20 | oddvds2 | |
37 | 21 35 22 36 | syl3anc | |
38 | simplr | |
|
39 | 1 20 | odcl2 | |
40 | 21 35 22 39 | syl3anc | |
41 | dvdsprime | |
|
42 | 38 40 41 | syl2anc | |
43 | 37 42 | mpbid | |
44 | 43 | ord | |
45 | 28 44 | mt3d | |
46 | 1 20 21 22 45 | iscygodd | |
47 | 19 46 | exlimddv | |