Metamath Proof Explorer


Theorem prmodvdslcmf

Description: The primorial of a nonnegative integer divides the least common multiple of all positive integers less than or equal to the integer. (Contributed by AV, 19-Aug-2020) (Revised by AV, 29-Aug-2020)

Ref Expression
Assertion prmodvdslcmf N0#pNlcm_1N

Proof

Step Hyp Ref Expression
1 prmoval N0#pN=k=1Nifkk1
2 eqidd k1Nmifmm1=mifmm1
3 simpr k1Nm=km=k
4 3 eleq1d k1Nm=kmk
5 4 3 ifbieq1d k1Nm=kifmm1=ifkk1
6 elfznn k1Nk
7 1nn 1
8 7 a1i k1N1
9 6 8 ifcld k1Nifkk1
10 2 5 6 9 fvmptd k1Nmifmm1k=ifkk1
11 10 eqcomd k1Nifkk1=mifmm1k
12 11 prodeq2i k=1Nifkk1=k=1Nmifmm1k
13 1 12 eqtrdi N0#pN=k=1Nmifmm1k
14 fzfid N01NFin
15 fz1ssnn 1N
16 14 15 jctil N01N1NFin
17 fzssz 1N
18 17 a1i N01N
19 0nelfz1 01N
20 19 a1i N001N
21 lcmfn0cl 1N1NFin01Nlcm_1N
22 18 14 20 21 syl3anc N0lcm_1N
23 id mm
24 7 a1i m1
25 23 24 ifcld mifmm1
26 25 adantl N0mifmm1
27 26 fmpttd N0mifmm1:
28 simpr N0k1Nk1N
29 28 adantr N0k1Nx1Nkk1N
30 eldifi x1Nkx1N
31 30 adantl N0k1Nx1Nkx1N
32 eldif x1Nkx1N¬xk
33 velsn xkx=k
34 33 biimpri x=kxk
35 34 equcoms k=xxk
36 35 necon3bi ¬xkkx
37 32 36 simplbiim x1Nkkx
38 37 adantl N0k1Nx1Nkkx
39 eqid mifmm1=mifmm1
40 39 fvprmselgcd1 k1Nx1Nkxmifmm1kgcdmifmm1x=1
41 29 31 38 40 syl3anc N0k1Nx1Nkmifmm1kgcdmifmm1x=1
42 41 ralrimiva N0k1Nx1Nkmifmm1kgcdmifmm1x=1
43 42 ralrimiva N0k1Nx1Nkmifmm1kgcdmifmm1x=1
44 eqidd N0k1Nmifmm1=mifmm1
45 simpr N0k1Nm=km=k
46 45 eleq1d N0k1Nm=kmk
47 46 45 ifbieq1d N0k1Nm=kifmm1=ifkk1
48 15 28 sselid N0k1Nk
49 17 28 sselid N0k1Nk
50 1zzd N0k1N1
51 49 50 ifcld N0k1Nifkk1
52 44 47 48 51 fvmptd N0k1Nmifmm1k=ifkk1
53 breq1 x=ifkk1xlcm_1Nifkk1lcm_1N
54 16 adantr N0k1N1N1NFin
55 17 2a1i 1NFin1N1N
56 55 imdistanri 1N1NFin1N1NFin
57 dvdslcmf 1N1NFinx1Nxlcm_1N
58 54 56 57 3syl N0k1Nx1Nxlcm_1N
59 elfzuz2 k1NN1
60 59 adantl N0k1NN1
61 eluzfz1 N111N
62 60 61 syl N0k1N11N
63 28 62 ifcld N0k1Nifkk11N
64 53 58 63 rspcdva N0k1Nifkk1lcm_1N
65 52 64 eqbrtrd N0k1Nmifmm1klcm_1N
66 65 ralrimiva N0k1Nmifmm1klcm_1N
67 coprmproddvds 1N1NFinlcm_1Nmifmm1:k1Nx1Nkmifmm1kgcdmifmm1x=1k1Nmifmm1klcm_1Nk=1Nmifmm1klcm_1N
68 16 22 27 43 66 67 syl122anc N0k=1Nmifmm1klcm_1N
69 13 68 eqbrtrd N0#pNlcm_1N