Description: The sum of the reciprocals of the primes diverges. Theorem 1.13 in ApostolNT p. 18. This is the "second" proof at http://en.wikipedia.org/wiki/Prime_harmonic_series , attributed to Paul Erdős. This is Metamath 100 proof #81. (Contributed by Mario Carneiro, 6-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | prmrec.f | |
|
Assertion | prmrec | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmrec.f | |
|
2 | inss2 | |
|
3 | elinel2 | |
|
4 | elfznn | |
|
5 | nnrecre | |
|
6 | 5 | recnd | |
7 | 3 4 6 | 3syl | |
8 | 7 | rgen | |
9 | 2 8 | pm3.2i | |
10 | fzfi | |
|
11 | 10 | olci | |
12 | sumss2 | |
|
13 | 9 11 12 | mp2an | |
14 | elin | |
|
15 | 14 | rbaib | |
16 | 15 | ifbid | |
17 | 16 | sumeq2i | |
18 | 13 17 | eqtri | |
19 | 4 | adantl | |
20 | prmnn | |
|
21 | 20 6 | syl | |
22 | 21 | adantl | |
23 | 0cnd | |
|
24 | 22 23 | ifclda | |
25 | 24 | mptru | |
26 | eleq1w | |
|
27 | oveq2 | |
|
28 | 26 27 | ifbieq1d | |
29 | 28 | cbvmptv | |
30 | 29 | fvmpt2 | |
31 | 19 25 30 | sylancl | |
32 | id | |
|
33 | nnuz | |
|
34 | 32 33 | eleqtrdi | |
35 | 25 | a1i | |
36 | 31 34 35 | fsumser | |
37 | 18 36 | eqtrid | |
38 | 37 | mpteq2ia | |
39 | 1z | |
|
40 | seqfn | |
|
41 | 39 40 | ax-mp | |
42 | 33 | fneq2i | |
43 | 41 42 | mpbir | |
44 | dffn5 | |
|
45 | 43 44 | mpbi | |
46 | 38 1 45 | 3eqtr4i | |
47 | 29 | prmreclem6 | |
48 | 46 47 | eqneltri | |