Metamath Proof Explorer


Theorem prmrec

Description: The sum of the reciprocals of the primes diverges. Theorem 1.13 in ApostolNT p. 18. This is the "second" proof at http://en.wikipedia.org/wiki/Prime_harmonic_series , attributed to Paul Erdős. This is Metamath 100 proof #81. (Contributed by Mario Carneiro, 6-Aug-2014)

Ref Expression
Hypothesis prmrec.f F=nk1n1k
Assertion prmrec ¬Fdom

Proof

Step Hyp Ref Expression
1 prmrec.f F=nk1n1k
2 inss2 1n1n
3 elinel2 k1nk1n
4 elfznn k1nk
5 nnrecre k1k
6 5 recnd k1k
7 3 4 6 3syl k1n1k
8 7 rgen k1n1k
9 2 8 pm3.2i 1n1nk1n1k
10 fzfi 1nFin
11 10 olci 1n11nFin
12 sumss2 1n1nk1n1k1n11nFink1n1k=k=1nifk1n1k0
13 9 11 12 mp2an k1n1k=k=1nifk1n1k0
14 elin k1nkk1n
15 14 rbaib k1nk1nk
16 15 ifbid k1nifk1n1k0=ifk1k0
17 16 sumeq2i k=1nifk1n1k0=k=1nifk1k0
18 13 17 eqtri k1n1k=k=1nifk1k0
19 4 adantl nk1nk
20 prmnn kk
21 20 6 syl k1k
22 21 adantl k1k
23 0cnd ¬k0
24 22 23 ifclda ifk1k0
25 24 mptru ifk1k0
26 eleq1w m=kmk
27 oveq2 m=k1m=1k
28 26 27 ifbieq1d m=kifm1m0=ifk1k0
29 28 cbvmptv mifm1m0=kifk1k0
30 29 fvmpt2 kifk1k0mifm1m0k=ifk1k0
31 19 25 30 sylancl nk1nmifm1m0k=ifk1k0
32 id nn
33 nnuz =1
34 32 33 eleqtrdi nn1
35 25 a1i nk1nifk1k0
36 31 34 35 fsumser nk=1nifk1k0=seq1+mifm1m0n
37 18 36 eqtrid nk1n1k=seq1+mifm1m0n
38 37 mpteq2ia nk1n1k=nseq1+mifm1m0n
39 1z 1
40 seqfn 1seq1+mifm1m0Fn1
41 39 40 ax-mp seq1+mifm1m0Fn1
42 33 fneq2i seq1+mifm1m0Fnseq1+mifm1m0Fn1
43 41 42 mpbir seq1+mifm1m0Fn
44 dffn5 seq1+mifm1m0Fnseq1+mifm1m0=nseq1+mifm1m0n
45 43 44 mpbi seq1+mifm1m0=nseq1+mifm1m0n
46 38 1 45 3eqtr4i F=seq1+mifm1m0
47 29 prmreclem6 ¬seq1+mifm1m0dom
48 46 47 eqneltri ¬Fdom