Description: A product of a singleton is the term. A version of prodsn using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prodsnf.1 | |
|
prodsnf.2 | |
||
Assertion | prodsnf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodsnf.1 | |
|
2 | prodsnf.2 | |
|
3 | nfcv | |
|
4 | nfcsb1v | |
|
5 | csbeq1a | |
|
6 | 3 4 5 | cbvprodi | |
7 | csbeq1 | |
|
8 | 1nn | |
|
9 | 8 | a1i | |
10 | 1z | |
|
11 | f1osng | |
|
12 | fzsn | |
|
13 | 10 12 | ax-mp | |
14 | f1oeq2 | |
|
15 | 13 14 | ax-mp | |
16 | 11 15 | sylibr | |
17 | 10 16 | mpan | |
18 | 17 | adantr | |
19 | velsn | |
|
20 | csbeq1 | |
|
21 | 1 | a1i | |
22 | 21 2 | csbiegf | |
23 | 22 | adantr | |
24 | 20 23 | sylan9eqr | |
25 | 19 24 | sylan2b | |
26 | simplr | |
|
27 | 25 26 | eqeltrd | |
28 | 13 | eleq2i | |
29 | velsn | |
|
30 | 28 29 | bitri | |
31 | fvsng | |
|
32 | 10 31 | mpan | |
33 | 32 | adantr | |
34 | 33 | csbeq1d | |
35 | simpr | |
|
36 | fvsng | |
|
37 | 10 35 36 | sylancr | |
38 | 23 34 37 | 3eqtr4rd | |
39 | fveq2 | |
|
40 | fveq2 | |
|
41 | 40 | csbeq1d | |
42 | 39 41 | eqeq12d | |
43 | 38 42 | syl5ibrcom | |
44 | 43 | imp | |
45 | 30 44 | sylan2b | |
46 | 7 9 18 27 45 | fprod | |
47 | 6 46 | eqtrid | |
48 | 10 37 | seq1i | |
49 | 47 48 | eqtrd | |