Metamath Proof Explorer


Theorem prodsnf

Description: A product of a singleton is the term. A version of prodsn using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses prodsnf.1 _kB
prodsnf.2 k=MA=B
Assertion prodsnf MVBkMA=B

Proof

Step Hyp Ref Expression
1 prodsnf.1 _kB
2 prodsnf.2 k=MA=B
3 nfcv _mA
4 nfcsb1v _km/kA
5 csbeq1a k=mA=m/kA
6 3 4 5 cbvprodi kMA=mMm/kA
7 csbeq1 m=1Mnm/kA=1Mn/kA
8 1nn 1
9 8 a1i MVB1
10 1z 1
11 f1osng 1MV1M:11-1 ontoM
12 fzsn 111=1
13 10 12 ax-mp 11=1
14 f1oeq2 11=11M:111-1 ontoM1M:11-1 ontoM
15 13 14 ax-mp 1M:111-1 ontoM1M:11-1 ontoM
16 11 15 sylibr 1MV1M:111-1 ontoM
17 10 16 mpan MV1M:111-1 ontoM
18 17 adantr MVB1M:111-1 ontoM
19 velsn mMm=M
20 csbeq1 m=Mm/kA=M/kA
21 1 a1i MV_kB
22 21 2 csbiegf MVM/kA=B
23 22 adantr MVBM/kA=B
24 20 23 sylan9eqr MVBm=Mm/kA=B
25 19 24 sylan2b MVBmMm/kA=B
26 simplr MVBmMB
27 25 26 eqeltrd MVBmMm/kA
28 13 eleq2i n11n1
29 velsn n1n=1
30 28 29 bitri n11n=1
31 fvsng 1MV1M1=M
32 10 31 mpan MV1M1=M
33 32 adantr MVB1M1=M
34 33 csbeq1d MVB1M1/kA=M/kA
35 simpr MVBB
36 fvsng 1B1B1=B
37 10 35 36 sylancr MVB1B1=B
38 23 34 37 3eqtr4rd MVB1B1=1M1/kA
39 fveq2 n=11Bn=1B1
40 fveq2 n=11Mn=1M1
41 40 csbeq1d n=11Mn/kA=1M1/kA
42 39 41 eqeq12d n=11Bn=1Mn/kA1B1=1M1/kA
43 38 42 syl5ibrcom MVBn=11Bn=1Mn/kA
44 43 imp MVBn=11Bn=1Mn/kA
45 30 44 sylan2b MVBn111Bn=1Mn/kA
46 7 9 18 27 45 fprod MVBmMm/kA=seq1×1B1
47 6 46 eqtrid MVBkMA=seq1×1B1
48 10 37 seq1i MVBseq1×1B1=B
49 47 48 eqtrd MVBkMA=B