Metamath Proof Explorer


Theorem psgnodpm

Description: A permutation which is odd (i.e. not even) has sign -1. (Contributed by SO, 9-Jul-2018)

Ref Expression
Hypotheses evpmss.s S=SymGrpD
evpmss.p P=BaseS
psgnevpmb.n N=pmSgnD
Assertion psgnodpm DFinFPpmEvenDNF=1

Proof

Step Hyp Ref Expression
1 evpmss.s S=SymGrpD
2 evpmss.p P=BaseS
3 psgnevpmb.n N=pmSgnD
4 eldif FPpmEvenDFP¬FpmEvenD
5 simpr DFinFPFP
6 5 a1d DFinFPNF=1FP
7 6 ancrd DFinFPNF=1FPNF=1
8 1 2 3 psgnevpmb DFinFpmEvenDFPNF=1
9 8 adantr DFinFPFpmEvenDFPNF=1
10 7 9 sylibrd DFinFPNF=1FpmEvenD
11 10 con3d DFinFP¬FpmEvenD¬NF=1
12 11 impr DFinFP¬FpmEvenD¬NF=1
13 4 12 sylan2b DFinFPpmEvenD¬NF=1
14 eqid mulGrpfld𝑠11=mulGrpfld𝑠11
15 1 3 14 psgnghm2 DFinNSGrpHommulGrpfld𝑠11
16 15 adantr DFinFPpmEvenDNSGrpHommulGrpfld𝑠11
17 14 cnmsgnbas 11=BasemulGrpfld𝑠11
18 2 17 ghmf NSGrpHommulGrpfld𝑠11N:P11
19 16 18 syl DFinFPpmEvenDN:P11
20 eldifi FPpmEvenDFP
21 20 adantl DFinFPpmEvenDFP
22 19 21 ffvelcdmd DFinFPpmEvenDNF11
23 fvex NFV
24 23 elpr NF11NF=1NF=1
25 22 24 sylib DFinFPpmEvenDNF=1NF=1
26 orel1 ¬NF=1NF=1NF=1NF=1
27 13 25 26 sylc DFinFPpmEvenDNF=1