Metamath Proof Explorer


Theorem psrbaglesupp

Description: The support of a dominated bag is smaller than the dominating bag. (Contributed by Mario Carneiro, 29-Dec-2014) Remove a sethood antecedent. (Revised by SN, 5-Aug-2024)

Ref Expression
Hypothesis psrbag.d D=f0I|f-1Fin
Assertion psrbaglesupp FDG:I0GfFG-1F-1

Proof

Step Hyp Ref Expression
1 psrbag.d D=f0I|f-1Fin
2 df-ofr r=ab|cdomadombacbc
3 2 relopabiv Relr
4 3 brrelex1i GfFGV
5 4 3ad2ant3 FDG:I0GfFGV
6 simp2 FDG:I0GfFG:I0
7 fcdmnn0suppg GVG:I0Gsupp0=G-1
8 5 6 7 syl2anc FDG:I0GfFGsupp0=G-1
9 eldifi xIF-1xI
10 simp3 FDG:I0GfFGfF
11 6 ffnd FDG:I0GfFGFnI
12 1 psrbagf FDF:I0
13 12 3ad2ant1 FDG:I0GfFF:I0
14 13 ffnd FDG:I0GfFFFnI
15 simp1 FDG:I0GfFFD
16 inidm II=I
17 eqidd FDG:I0GfFxIGx=Gx
18 eqidd FDG:I0GfFxIFx=Fx
19 11 14 5 15 16 17 18 ofrfvalg FDG:I0GfFGfFxIGxFx
20 10 19 mpbid FDG:I0GfFxIGxFx
21 20 r19.21bi FDG:I0GfFxIGxFx
22 9 21 sylan2 FDG:I0GfFxIF-1GxFx
23 fcdmnn0suppg FDF:I0Fsupp0=F-1
24 15 13 23 syl2anc FDG:I0GfFFsupp0=F-1
25 eqimss Fsupp0=F-1Fsupp0F-1
26 24 25 syl FDG:I0GfFFsupp0F-1
27 c0ex 0V
28 27 a1i FDG:I0GfF0V
29 13 26 15 28 suppssrg FDG:I0GfFxIF-1Fx=0
30 22 29 breqtrd FDG:I0GfFxIF-1Gx0
31 ffvelcdm G:I0xIGx0
32 6 9 31 syl2an FDG:I0GfFxIF-1Gx0
33 32 nn0ge0d FDG:I0GfFxIF-10Gx
34 32 nn0red FDG:I0GfFxIF-1Gx
35 0re 0
36 letri3 Gx0Gx=0Gx00Gx
37 34 35 36 sylancl FDG:I0GfFxIF-1Gx=0Gx00Gx
38 30 33 37 mpbir2and FDG:I0GfFxIF-1Gx=0
39 6 38 suppss FDG:I0GfFGsupp0F-1
40 8 39 eqsstrrd FDG:I0GfFG-1F-1