| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ptcn.2 |  | 
						
							| 2 |  | ptcn.3 |  | 
						
							| 3 |  | ptcn.4 |  | 
						
							| 4 |  | ptcn.5 |  | 
						
							| 5 |  | ptcn.6 |  | 
						
							| 6 | 2 | adantr |  | 
						
							| 7 | 4 | ffvelcdmda |  | 
						
							| 8 |  | toptopon2 |  | 
						
							| 9 | 7 8 | sylib |  | 
						
							| 10 |  | cnf2 |  | 
						
							| 11 | 6 9 5 10 | syl3anc |  | 
						
							| 12 | 11 | fvmptelcdm |  | 
						
							| 13 | 12 | an32s |  | 
						
							| 14 | 13 | ralrimiva |  | 
						
							| 15 | 3 | adantr |  | 
						
							| 16 |  | mptelixpg |  | 
						
							| 17 | 15 16 | syl |  | 
						
							| 18 | 14 17 | mpbird |  | 
						
							| 19 | 1 | ptuni |  | 
						
							| 20 | 3 4 19 | syl2anc |  | 
						
							| 21 | 20 | adantr |  | 
						
							| 22 | 18 21 | eleqtrd |  | 
						
							| 23 | 22 | fmpttd |  | 
						
							| 24 | 2 | adantr |  | 
						
							| 25 | 3 | adantr |  | 
						
							| 26 | 4 | adantr |  | 
						
							| 27 |  | simpr |  | 
						
							| 28 | 5 | adantlr |  | 
						
							| 29 |  | simplr |  | 
						
							| 30 |  | toponuni |  | 
						
							| 31 | 2 30 | syl |  | 
						
							| 32 | 31 | ad2antrr |  | 
						
							| 33 | 29 32 | eleqtrd |  | 
						
							| 34 |  | eqid |  | 
						
							| 35 | 34 | cncnpi |  | 
						
							| 36 | 28 33 35 | syl2anc |  | 
						
							| 37 | 1 24 25 26 27 36 | ptcnp |  | 
						
							| 38 | 37 | ralrimiva |  | 
						
							| 39 |  | pttop |  | 
						
							| 40 | 3 4 39 | syl2anc |  | 
						
							| 41 | 1 40 | eqeltrid |  | 
						
							| 42 |  | toptopon2 |  | 
						
							| 43 | 41 42 | sylib |  | 
						
							| 44 |  | cncnp |  | 
						
							| 45 | 2 43 44 | syl2anc |  | 
						
							| 46 | 23 38 45 | mpbir2and |  |