Metamath Proof Explorer


Theorem ptcn

Description: If every projection of a function is continuous, then the function itself is continuous into the product topology. (Contributed by Mario Carneiro, 3-Feb-2015)

Ref Expression
Hypotheses ptcn.2 K=𝑡F
ptcn.3 φJTopOnX
ptcn.4 φIV
ptcn.5 φF:ITop
ptcn.6 φkIxXAJCnFk
Assertion ptcn φxXkIAJCnK

Proof

Step Hyp Ref Expression
1 ptcn.2 K=𝑡F
2 ptcn.3 φJTopOnX
3 ptcn.4 φIV
4 ptcn.5 φF:ITop
5 ptcn.6 φkIxXAJCnFk
6 2 adantr φkIJTopOnX
7 4 ffvelcdmda φkIFkTop
8 toptopon2 FkTopFkTopOnFk
9 7 8 sylib φkIFkTopOnFk
10 cnf2 JTopOnXFkTopOnFkxXAJCnFkxXA:XFk
11 6 9 5 10 syl3anc φkIxXA:XFk
12 11 fvmptelcdm φkIxXAFk
13 12 an32s φxXkIAFk
14 13 ralrimiva φxXkIAFk
15 3 adantr φxXIV
16 mptelixpg IVkIAkIFkkIAFk
17 15 16 syl φxXkIAkIFkkIAFk
18 14 17 mpbird φxXkIAkIFk
19 1 ptuni IVF:ITopkIFk=K
20 3 4 19 syl2anc φkIFk=K
21 20 adantr φxXkIFk=K
22 18 21 eleqtrd φxXkIAK
23 22 fmpttd φxXkIA:XK
24 2 adantr φzXJTopOnX
25 3 adantr φzXIV
26 4 adantr φzXF:ITop
27 simpr φzXzX
28 5 adantlr φzXkIxXAJCnFk
29 simplr φzXkIzX
30 toponuni JTopOnXX=J
31 2 30 syl φX=J
32 31 ad2antrr φzXkIX=J
33 29 32 eleqtrd φzXkIzJ
34 eqid J=J
35 34 cncnpi xXAJCnFkzJxXAJCnPFkz
36 28 33 35 syl2anc φzXkIxXAJCnPFkz
37 1 24 25 26 27 36 ptcnp φzXxXkIAJCnPKz
38 37 ralrimiva φzXxXkIAJCnPKz
39 pttop IVF:ITop𝑡FTop
40 3 4 39 syl2anc φ𝑡FTop
41 1 40 eqeltrid φKTop
42 toptopon2 KTopKTopOnK
43 41 42 sylib φKTopOnK
44 cncnp JTopOnXKTopOnKxXkIAJCnKxXkIA:XKzXxXkIAJCnPKz
45 2 43 44 syl2anc φxXkIAJCnKxXkIA:XKzXxXkIAJCnPKz
46 23 38 45 mpbir2and φxXkIAJCnK