Metamath Proof Explorer


Theorem pwsvscafval

Description: Scalar multiplication in a structure power is pointwise. (Contributed by Mario Carneiro, 11-Jan-2015)

Ref Expression
Hypotheses pwsvscaval.y Y = R 𝑠 I
pwsvscaval.b B = Base Y
pwsvscaval.s · ˙ = R
pwsvscaval.t ˙ = Y
pwsvscaval.f F = Scalar R
pwsvscaval.k K = Base F
pwsvscaval.r φ R V
pwsvscaval.i φ I W
pwsvscaval.a φ A K
pwsvscaval.x φ X B
Assertion pwsvscafval φ A ˙ X = I × A · ˙ f X

Proof

Step Hyp Ref Expression
1 pwsvscaval.y Y = R 𝑠 I
2 pwsvscaval.b B = Base Y
3 pwsvscaval.s · ˙ = R
4 pwsvscaval.t ˙ = Y
5 pwsvscaval.f F = Scalar R
6 pwsvscaval.k K = Base F
7 pwsvscaval.r φ R V
8 pwsvscaval.i φ I W
9 pwsvscaval.a φ A K
10 pwsvscaval.x φ X B
11 1 5 pwsval R V I W Y = F 𝑠 I × R
12 7 8 11 syl2anc φ Y = F 𝑠 I × R
13 12 fveq2d φ Y = F 𝑠 I × R
14 4 13 syl5eq φ ˙ = F 𝑠 I × R
15 14 oveqd φ A ˙ X = A F 𝑠 I × R X
16 eqid F 𝑠 I × R = F 𝑠 I × R
17 eqid Base F 𝑠 I × R = Base F 𝑠 I × R
18 eqid F 𝑠 I × R = F 𝑠 I × R
19 5 fvexi F V
20 19 a1i φ F V
21 fnconstg R V I × R Fn I
22 7 21 syl φ I × R Fn I
23 12 fveq2d φ Base Y = Base F 𝑠 I × R
24 2 23 syl5eq φ B = Base F 𝑠 I × R
25 10 24 eleqtrd φ X Base F 𝑠 I × R
26 16 17 18 6 20 8 22 9 25 prdsvscaval φ A F 𝑠 I × R X = x I A I × R x X x
27 fvconst2g R V x I I × R x = R
28 7 27 sylan φ x I I × R x = R
29 28 fveq2d φ x I I × R x = R
30 29 3 eqtr4di φ x I I × R x = · ˙
31 30 oveqd φ x I A I × R x X x = A · ˙ X x
32 31 mpteq2dva φ x I A I × R x X x = x I A · ˙ X x
33 9 adantr φ x I A K
34 fvexd φ x I X x V
35 fconstmpt I × A = x I A
36 35 a1i φ I × A = x I A
37 eqid Base R = Base R
38 1 37 2 7 8 10 pwselbas φ X : I Base R
39 38 feqmptd φ X = x I X x
40 8 33 34 36 39 offval2 φ I × A · ˙ f X = x I A · ˙ X x
41 32 40 eqtr4d φ x I A I × R x X x = I × A · ˙ f X
42 15 26 41 3eqtrd φ A ˙ X = I × A · ˙ f X