Metamath Proof Explorer


Theorem pwsvscafval

Description: Scalar multiplication in a structure power is pointwise. (Contributed by Mario Carneiro, 11-Jan-2015)

Ref Expression
Hypotheses pwsvscaval.y Y=R𝑠I
pwsvscaval.b B=BaseY
pwsvscaval.s ·˙=R
pwsvscaval.t ˙=Y
pwsvscaval.f F=ScalarR
pwsvscaval.k K=BaseF
pwsvscaval.r φRV
pwsvscaval.i φIW
pwsvscaval.a φAK
pwsvscaval.x φXB
Assertion pwsvscafval φA˙X=I×A·˙fX

Proof

Step Hyp Ref Expression
1 pwsvscaval.y Y=R𝑠I
2 pwsvscaval.b B=BaseY
3 pwsvscaval.s ·˙=R
4 pwsvscaval.t ˙=Y
5 pwsvscaval.f F=ScalarR
6 pwsvscaval.k K=BaseF
7 pwsvscaval.r φRV
8 pwsvscaval.i φIW
9 pwsvscaval.a φAK
10 pwsvscaval.x φXB
11 1 5 pwsval RVIWY=F𝑠I×R
12 7 8 11 syl2anc φY=F𝑠I×R
13 12 fveq2d φY=F𝑠I×R
14 4 13 eqtrid φ˙=F𝑠I×R
15 14 oveqd φA˙X=AF𝑠I×RX
16 eqid F𝑠I×R=F𝑠I×R
17 eqid BaseF𝑠I×R=BaseF𝑠I×R
18 eqid F𝑠I×R=F𝑠I×R
19 5 fvexi FV
20 19 a1i φFV
21 fnconstg RVI×RFnI
22 7 21 syl φI×RFnI
23 12 fveq2d φBaseY=BaseF𝑠I×R
24 2 23 eqtrid φB=BaseF𝑠I×R
25 10 24 eleqtrd φXBaseF𝑠I×R
26 16 17 18 6 20 8 22 9 25 prdsvscaval φAF𝑠I×RX=xIAI×RxXx
27 fvconst2g RVxII×Rx=R
28 7 27 sylan φxII×Rx=R
29 28 fveq2d φxII×Rx=R
30 29 3 eqtr4di φxII×Rx=·˙
31 30 oveqd φxIAI×RxXx=A·˙Xx
32 31 mpteq2dva φxIAI×RxXx=xIA·˙Xx
33 9 adantr φxIAK
34 fvexd φxIXxV
35 fconstmpt I×A=xIA
36 35 a1i φI×A=xIA
37 eqid BaseR=BaseR
38 1 37 2 7 8 10 pwselbas φX:IBaseR
39 38 feqmptd φX=xIXx
40 8 33 34 36 39 offval2 φI×A·˙fX=xIA·˙Xx
41 32 40 eqtr4d φxIAI×RxXx=I×A·˙fX
42 15 26 41 3eqtrd φA˙X=I×A·˙fX