| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elq |  | 
						
							| 2 |  | elq |  | 
						
							| 3 |  | nnz |  | 
						
							| 4 |  | zmulcl |  | 
						
							| 5 | 3 4 | sylan2 |  | 
						
							| 6 | 5 | ad2ant2rl |  | 
						
							| 7 |  | simpl |  | 
						
							| 8 |  | nnz |  | 
						
							| 9 | 8 | adantl |  | 
						
							| 10 |  | zmulcl |  | 
						
							| 11 | 7 9 10 | syl2anr |  | 
						
							| 12 | 6 11 | zaddcld |  | 
						
							| 13 | 12 | adantr |  | 
						
							| 14 |  | nnmulcl |  | 
						
							| 15 | 14 | ad2ant2l |  | 
						
							| 16 | 15 | adantr |  | 
						
							| 17 |  | oveq12 |  | 
						
							| 18 |  | zcn |  | 
						
							| 19 |  | zcn |  | 
						
							| 20 | 18 19 | anim12i |  | 
						
							| 21 |  | nncn |  | 
						
							| 22 |  | nnne0 |  | 
						
							| 23 | 21 22 | jca |  | 
						
							| 24 |  | nncn |  | 
						
							| 25 |  | nnne0 |  | 
						
							| 26 | 24 25 | jca |  | 
						
							| 27 | 23 26 | anim12i |  | 
						
							| 28 |  | divadddiv |  | 
						
							| 29 | 20 27 28 | syl2an |  | 
						
							| 30 | 29 | an4s |  | 
						
							| 31 | 17 30 | sylan9eqr |  | 
						
							| 32 |  | rspceov |  | 
						
							| 33 |  | elq |  | 
						
							| 34 | 32 33 | sylibr |  | 
						
							| 35 | 13 16 31 34 | syl3anc |  | 
						
							| 36 | 35 | an4s |  | 
						
							| 37 | 36 | exp43 |  | 
						
							| 38 | 37 | rexlimivv |  | 
						
							| 39 | 38 | rexlimdvv |  | 
						
							| 40 | 39 | imp |  | 
						
							| 41 | 1 2 40 | syl2anb |  |