Description: Closure of addition of rationals. (Contributed by NM, 1-Aug-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | qaddcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elq | |
|
2 | elq | |
|
3 | nnz | |
|
4 | zmulcl | |
|
5 | 3 4 | sylan2 | |
6 | 5 | ad2ant2rl | |
7 | simpl | |
|
8 | nnz | |
|
9 | 8 | adantl | |
10 | zmulcl | |
|
11 | 7 9 10 | syl2anr | |
12 | 6 11 | zaddcld | |
13 | 12 | adantr | |
14 | nnmulcl | |
|
15 | 14 | ad2ant2l | |
16 | 15 | adantr | |
17 | oveq12 | |
|
18 | zcn | |
|
19 | zcn | |
|
20 | 18 19 | anim12i | |
21 | nncn | |
|
22 | nnne0 | |
|
23 | 21 22 | jca | |
24 | nncn | |
|
25 | nnne0 | |
|
26 | 24 25 | jca | |
27 | 23 26 | anim12i | |
28 | divadddiv | |
|
29 | 20 27 28 | syl2an | |
30 | 29 | an4s | |
31 | 17 30 | sylan9eqr | |
32 | rspceov | |
|
33 | elq | |
|
34 | 32 33 | sylibr | |
35 | 13 16 31 34 | syl3anc | |
36 | 35 | an4s | |
37 | 36 | exp43 | |
38 | 37 | rexlimivv | |
39 | 38 | rexlimdvv | |
40 | 39 | imp | |
41 | 1 2 40 | syl2anb | |